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Summary

This report examines a Massachusetts 
pilot program for quarterly benchmark 
exams in middle-school mathematics, 
finding that program schools do not 
show greater gains in student achieve-
ment after a year. But that finding might 
reflect limited data rather than ineffec-
tive benchmark assessments.

Benchmark assessments are used in many 
districts throughout the nation to raise stu-
dent, school, and district achievement and to 
meet the requirements of the No Child Left 
Behind Act of 2001. This report details a study 
using a quasi-experimental design to examine 
whether schools using quarterly benchmark 
exams in middle-school mathematics under 
a Massachusetts pilot program show greater 
gains in student achievement than schools not 
in the program. 

To measure the effects of benchmark assess-
ments, the study matched 44 comparison 
schools to the 22 schools in the Massachusetts 
pilot program on pre-implementation test 
scores and other variables. It examined de-
scriptive statistics on the data and performed 
interrupted time series analysis to test causal 
inferences. 

The study found no immediate statistically sig-
nificant or substantively important difference 

between the program and comparison schools. 
That finding might, however, reflect limita-
tions in the data rather than the ineffective-
ness of benchmark assessments.

First, data are lacking on what benchmark 
assessment practices comparison schools may 
be using, because the study examined the 
impact of a particular structured benchmark-
ing program. More than 70 percent of districts 
are doing some type of formative assess-
ment, so it is possible that at least some of the 
comparison schools implemented their own 
version of benchmarking.  Second, the study 
was “underpowered.” That means that a small 
but important treatment effect for benchmark-
ing could have gone undetected because there 
were only 22 program schools and 44 com-
parison schools. Third, with only one year of 
post-implementation data, it may be too early 
to observe any impact from the intervention in 
the program schools. 

Although the study did not find any imme-
diate difference between schools employing 
benchmark assessments and those not doing 
so, it provides initial empirical data to inform 
state and local education agencies. 

The report urges that researchers and policy-
makers continue to track achievement data 
in the program and comparison schools, to 

Measuring how benchmark assessments 
affect student achievement
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reassess the initial findings in future years, 
and to provide additional data to local and 
state decisionmakers about the impact of this 
benchmark assessment practice. 

Using student-level data rather than school-
level data might help researchers examine the 
impact of benchmark assessments on impor-
tant No Child Left Behind subgroups (such as 
minority students or students with disabili-
ties). Some nontrivial effects for subgroups 
might be masked by comparing school mean 
scores. (At the onset of the study, only school-
level data were available to researchers.) 

Another useful follow-up would be disag-
gregating the school achievement data by 
mathematics content strand to see if there are 
any effects in particular standards. Because 
the quarterly assessments are broken out by 
mathematics content strand, doing so would 
connect logically with the benchmark assess-
ment strategy. This refined data analysis might 

be more sensitive to the intervention and 
might also be linked to information provided 
to the Massachusetts Department of Education 
about which content strands schools focused 
on in their benchmark assessments.

Conversations with education decision-
makers support what seems to be common 
sense. Higher mathematics scores will come 
not because benchmarks exist but because 
of how a school’s teachers and leaders use 
the assessment data. This kind of follow-up 
research, though difficult, is imperative to 
better understand the impact of benchmark 
assessments. A possible approach is to exam-
ine initial district progress reports for insight 
into school buy-in to the initiative, quality of 
leadership, challenges to implementation, par-
ticular standards that participating districts 
focus on, and how schools use the benchmark 
assessment data.

December 2007
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This report 
examines a 
Massachusetts 
pilot program 
for quarterly 
benchmark exams 
in middle-school 
mathematics, 
finding that 
program schools do 
not show greater 
gains in student 
achievement after 
a year. But that 
finding might 
reflect limited 
data rather 
than ineffective 
benchmark 
assessments.

Overview

Benchmark  assessments are used in many 
districts throughout the United States to raise 

student, school, and district achievement and 
to meet the requirements of the No Child Left 
Behind Act of 2001 (see box 1 on key terms). This 
report details a study using a quasi-experimental 
design to examine whether schools using quarterly 
benchmark exams in middle-school mathematics 
under a Massachusetts pilot program show greater 
gains in student achievement than schools not in 
the program. 

To measure the effects of benchmark assessments, 
the study matched 44 comparison schools to the 
22 program schools in the Massachusetts pilot 
program on pre-implementation test scores and 
other variables. It examined descriptive statistics 
on the data and performed interrupted time series 
analysis to test causal inferences. 

The study found no immediate statistically 
significant or substantively important difference 
between the program and comparison schools 
a year after the pilot began. That finding might, 
however, reflect limitations in the data rather than 
the ineffectiveness of benchmark assessments.

Data on the effectiveness of 
benchmark assessments are limited

Benchmark assessments align with state stan-
dards, are generally administered three or four 
times a year, and provide educators and ad-
ministrators with immediate student-level data 
connected to individual standards and content 
strands (Herman & Baker, 2005; Olson, 2005). 
Benchmark assessments are generally regarded as 
a promising practice. A U.S. Department of Educa-
tion report (2007) notes that “regardless of their 
specific mathematics programs, No Child Left 
Behind Blue Ribbon Schools . . . [all] emphasize 
alignment of the school’s mathematics curriculum 
with state standards and conduct frequent bench-
mark assessments to determine student mastery of 
the standards.” 

By providing timely information to educa-
tors about student growth on standards, such 
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assessments allow instructional practices to be 
modified to better meet student needs. Benchmark 
assessments fill a gap left by annual state tests, 
which often provide data only months after they 
are administered and whose purpose is largely 
summative (Herman & Baker, 2005; Olson, 2005). 
A 2005 Education Week survey of superintendents 
found that approximately 70 percent reported 

using benchmark assessments in their districts 
(Olson). But there is little empirical evidence to de-
termine whether and to what extent these aligned 
benchmark assessments affect student outcomes. 
This report provides evidence on the impact of a 
Massachusetts Department of Education bench-
mark assessment initiative targeting high-poverty 
middle schools. 

Box 1	

Key terms used in the report

Benchmark assessment. A bench-
mark assessment is an interim as-
sessment created by districts that can 
be used both formatively and sum-
matively. It provides local account-
ability data on identified learning 
standards for district review after a 
defined instructional period and pro-
vides teachers with student outcome 
data to inform instructional practice 
and intervention before annual state 
summative assessments. In addi-
tion, a benchmark assessment allows 
educators to monitor the progress of 
students against the state standards 
and to predict performance on state 
exams.   

Content strand. The Massachusetts 
Curriculum Frameworks contain 
five content strands that are assessed 
through the Massachusetts Compre-
hensive Assessment System: num-
ber sense and operation; patterns, 
relations, and algebra; geometry; 
measurement; and data analysis, 
statistics, and probability.

Effect size. An effect size of 0.40 
means that the experimental group 
is performing, on average, about 0.40 
of a standard deviation better than 
the comparison group (Valentine 
and Cooper, 2003). An effect size of 

0.40 represents a roughly 20 percent 
improvement over the comparison 
group.

Formative assessment. In this study 
a formative assessment is an assess-
ment whose data are used to inform 
instructional practice within a cycle 
of learning for the students assessed. 
In September 2007 the Formative 
Assessment for Students and Teachers 
study group of the Council of Chief 
State School Officers’ Assessment for 
Learning further refined the definition 
of formative assessment as “a process 
used by teachers and students during 
instruction that provides feedback to 
adjust ongoing teaching and learning 
to improve students’ achievement of 
intended instructional outcomes” (see 
http://www.ccsso.org/projects/scass/
Projects/Formative_Assessment_for_
Students_and_Teachers/).

Interrupted time series analysis. An 
interrupted time series analysis is a 
series of observations made on one or 
more variables over time before and 
after the implementation of a pro-
gram or treatment (Shadish, Cook, & 
Campbell, 2002).

Quasi-experimental design. A quasi-
experimental design is an experimen-
tal design where units of study are 
not assigned to conditions randomly 
(Shadish, Cook, & Campbell, 2002). 

Scaled scores. Scaled scores are con-
structed by converting students’ raw 
scores (say, the number of questions 
correct) on a test to yield comparable 
results across students, test versions, 
or time. 

Statistical power. Statistical power 
refers to the ability of the statistical 
test to detect a true treatment effect, 
if one exists. Although there are other 
design features that can influence the 
statistical power of a test, researchers 
are generally most concerned with 
sample size, because it is the compo-
nent they have the most control over 
and can normally plan for.

Summative assessment. A summative 
assessment is designed to show the 
extent to which students understand 
the skills, objectives, and content of 
a program of study. The assessments 
are administered after the oppor-
tunity to learn subject matter has 
ended, such as at the end of a course, 
semester, or grade.

Underpowered study. A study is 
considered underpowered if, all 
else being equal, it lacks a sufficient 
sample size to “detect” a small but 
nontrivial treatment effect. An 
underpowered study would lead re-
searchers to report that such a small 
but nontrivial difference was not 
statistically significant.
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Studies of benchmark assessments’ effects on 
student outcomes are few. But the substantial 
literature on the effects of formative assessments 
more generally points consistently to the positive 
effects of formative assessment on student learn-
ing (Black & Wiliam, 1998a, 1998b; Bloom, 1984). 
Reviewing 250 studies of classroom formative 
assessments, Black and Wiliam (1998a, 1998b) 
find that formative assessments, broadly defined, 
are positively correlated with student learning, 
boosting performance 20–40 percent over that 
of comparison groups (with effect sizes from 
0.40 to 0.70).1 Black and Wiliam note that these 
positive effects are even larger for low-achieving 
students than for the general student population. 
Other studies indicate that formative assessments 
can support students and teachers in identifying 
learning goals and the instructional strategies 
to achieve them (Boston, 2002). Whether these 
trends hold for benchmark assessments, however, 
has yet to be shown.

Making this report particularly timely are the 
widespread interest in the Northeast and Islands 
Region in formative assessment and systems 
to support it and the piloting of a benchmark 
assessment approach to mathematics in Massa-
chusetts middle schools. State education agen-
cies in New York, Vermont, and Connecticut 
are also working with federal assessment and 
accountability centers and regional comprehen-
sive centers to pilot formative and benchmark 
assessment practices in select districts. And the 
large financial investment required for the data 
management systems to support this comprehen-
sive approach underscores the need for indepen-
dent data to inform state and district investment 
decisions.

The 2005 Massachusetts Comprehensive School 
Reform and the Technology Enhancement 
Competitive grant programs include priorities 
for participating schools and districts to develop 
and use benchmark assessments. As a result, 
eight Massachusetts school districts use a data 
management system supported by Assessment 
Technologies Incorporated to develop their own 

grade-level benchmark 
assessments in math-
ematics for about 10,000 
middle-school students 
in 25 schools. The deci-
sion of the Massachusetts 
Department of Education 
to support the develop-
ment of mathematics 
benchmark assessments 
in a limited number of 
middle schools provided 
an opportunity to study 
the effects on student achievement.

This report details a study on whether schools 
using quarterly benchmark exams in middle-
school mathematics under the Massachusetts pilot 
program show greater gains in student achieve-
ment after one year than schools not in the pro-
gram. The study looked at 44 comparison schools 
and 22 program schools using quarterly bench-
mark assessments aligned with Massachusetts 
Curriculum Frameworks Standards for mathemat-
ics in grade 8, with student achievement measured 
by the Massachusetts Comprehensive Assessment 
System (MCAS).

Few effects from benchmark assessments 
are evident after one program year 

The study was designed to determine whether 
there was any immediate, discernible effect on 
eighth-grade mathematics achievement from 
using benchmark assessments in middle schools 
receiving the Comprehensive School Reform 
grants. An advantage of the study’s achievement 
data was that they went beyond a single pretest 
year and included scores from five prior annual 
administrations of the MCAS, yielding five pre-
implementation years for eighth-grade mathemat-
ics scores. A disadvantage of the data was that they 
contain only one post-test year.2 Even so, the data 
could show whether there was any perceptible, im-
mediate increase or decrease in scores due to the 
implementation of benchmark assessments.

There are few studies of 

benchmark assessments’ 

effects on student 

outcomes, but the 

substantial literature 

on the effects of 

formative assessments 

more generally points 

consistently to the 

positive effects on 

student learning
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Box 2	

Methodology

A quasi-experimental design, with 
program and matched comparison 
schools, was used to examine whether 
schools using quarterly benchmark 
exams in middle-school mathematics 
under the Massachusetts pilot pro-
gram showed greater gains in student 
achievement in mathematics perfor-
mance after one year than schools not 
in the program. Analyses were based 
on (mostly) publicly available,1 school 
achievement and demographic data 
maintained by the Massachusetts De-
partment of Education. The primary 
outcome measure was eighth-grade 
mathematics achievement, as assessed 
by the Massachusetts Comprehensive 
Assessment System (MCAS).

Defining the program
The study defined benchmark as-
sessments as assessments that align 
with the Massachusetts Curriculum 
Frameworks Standards, are adminis-
tered quarterly at the school level, and 
yield student-level data—immediately 
available to school educators and 
administrators—aligned with individ-
ual standards and content strands. For 
the benchmark assessment initiative 
examined in the report, the Massachu-
setts Department of Education selected 
high-poverty middle schools under 
pressure to significantly improve their 
students’ mathematics achievement, 
choosing 25 schools in eight districts to 
participate in the pilot initiative. 

Constructing the study database 
and describing the variables
Data were collected from student- or 
school-level achievement and de-
mographic data maintained by the 

Massachusetts Department of Educa-
tion.2 The outcome variable was scaled 
eighth-grade MCAS mathematics 
scores over 2001–06. The MCAS, which 
fulfills the requirements of the No 
Child Left Behind Act of 2001 requir-
ing annual assessments in reading and 
mathematics for students in grades 
3–8 and in high school, tests all public 
school students in Massachusetts.

Other variables gathered for the study 
included the school name, location, 
grade structure, and enrollment; the 
race and ethnicity of students; and 
the proportion of limited English 
proficiency and low-income students. 

Creating a comparison group
Only a well implemented random-
ization procedure controls for both 
known and unknown factors that 
could influence or bias the findings. 
But because the grants to implement 
the benchmark assessments were 
already distributed and the program 
was already administered to schools, 
random assignment was not possible. 
So, it was necessary to use other pro-
cedures to create a counterfactual—a 
set of schools that did not receive the 
program. 

The study used covariate matching 
to create a set of comparison schools 
that was as similar as possible to the 
program schools (in the aggregate) on 
the chosen factors, meaning that any 
findings, whether positive or nega-
tive, would be unlikely to have been 
influenced by those factors. These 
variables included enrollment, per-
centage of students classified as low 
income, percentage of students classi-
fied as English language learners, and 
percentage of students categorized in 

different ethnic groups. Also included 
were each school’s eighth-grade base-
line (or pretest) mathematics score 
(based on an average of its 2004/05 
eighth-grade mathematics scores) 
and the type of location it served.

Prior research guided the selection of 
the variables used as covariates in the 
matching. Bloom (2003) suggests that 
pretest scores are perhaps the most 
important variable to use in a match-
ing procedure. There is also substan-
tial research that identifies large gaps 
in academic achievement for racial 
minorities (Jencks & Phillips, 1998), 
low-income students (Hannaway, 
2005), and English language learners 
(Abedi & Gandara, 2006). Although 
the research on the relationship 
between school size and academic 
achievement is somewhat conflict-
ing (Cotton, 1996), the variability in 
school size resulted in total enroll-
ment in the middle school being 
included in the matching procedure. 

The eligibility pool for the compari-
son matches included the 389 Mas-
sachusetts middle schools that did 
not receive the Comprehensive School 
Reform grants. Statistical procedures 
were used to identify the two best 
matches for each program school 
from the eligibility pool. The covariate 
matching resulted in a final sample of 
22 program schools and 44 compari-
son schools that were nearly identical 
on pretest academic scores. The project 
design achieved balance on nearly all 
school-level social and demographic 
characteristics, except that there were 
larger shares of African American and 
Pacific Islander students in program 
schools. These differences were con-
trolled for statistically in the outcome 
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To attribute changes to benchmark assessments, 
more information than pretest and post-test scores 
from program schools was needed. Did similar 
schools, not implementing the benchmarking 
practice, fare better or worse than the 22 program 
schools? It could be that the program schools im-
proved slightly, but that similar schools not imple-
menting the benchmark assessment practice did 
much better or much worse. So achievement data 
were also examined from comparison schools—a 
set of similar Massachusetts schools that did not 
implement the program (for details on methodol-
ogy, see box 2 and appendixes A and B; for details 
on selecting comparison schools, see box 2 and 
appendix C). 

Researchers developed a set of 44 comparison 
middle schools in Massachusetts that were very 
similar to the program schools (in the aggregate) 
on a number of variables. Most important, the 
comparison schools were nearly identical to the 
program schools on the pre-implementation 
scores. The 44 comparison schools thus provided 
an opportunity to track the movement of eighth-
grade mathematics scores over the period in the 
absence of the program.

. . . using descriptive statistics

Scaled scores for program and comparison schools 
from 2001 to 2006 did not show a large change 
in eighth-grade MCAS scores for either program 
or comparison schools (table 1).3 Note that scaled 
scores for both groups were distributed in the 

MCAS “needs improvement” category for all 
years—further evidence to support the validity of 
the matching procedure.4

There appeared to be a very slight uptick in eighth-
grade mathematics outcomes after the intervention 
in 2006. There was, however, a similar increase 
in 2004, before the intervention. And trends were 
similar for the program and comparison groups. In 
both, there was a very slight increase on the outcome 
measure, but similar increases occurred before the 
2006 intervention (figure 1). So, the descriptive sta-
tistics showed no perceptible difference between the 
22 program schools and the 44 comparison schools 
on their 2006 eighth-grade mathematics outcomes.

analysis, with no change in the results 
(see appendix D). 

Analyzing the data
After matching, descriptive statis-
tics were used to examine the mean 
scores for all five pre-implementation 
years and one post-implementation 
year for the program and comparison 
schools. A comparative interrupted 
time series analysis was also used 

to more rigorously assess whether 
there was a statistically significant 
difference between the program 
and comparison schools in changes 
in mathematics performance (see 
Bloom, 2003; Cook & Campbell, 
1979). The interrupted time series 
design was meant to determine 
whether there was any change in the 
trend because of the “interruption” 
(program implementation). 

Notes
The 2001–03 achievement data were 1.	
not publicly available and had to be 
requested from the Massachusetts 
Department of Education.
Student level data for 2001–03 had 2.	
to be aggregated at the school level. 
The 2001–03 achievement data were 
provided by the Massachusetts Depart-
ment of Education at the student level, 
but were not linked to the student level 
demographic data for the same years.

Table 1	

Scaled eighth-grade mathematics scores 
for program and comparison schools in the 
Massachusetts Comprehensive Assessment 
System, 2001–06 

Year Program schools Comparison schools

2001 224.80 226.31

2002 223.21 223.28

2003 224.81 224.09

2004 226.10 225.32

2005 225.62 225.23

2006 226.98 226.18

Note: Scaled scores are constructed by converting students’ raw scores 
(say, the number of questions answered corrrectly) on a test to yield 
comparable results across students, test versions, or time. Scores for 
both groups are distributed in the Massachusetts Comprehensive As-
sessment System “needs improvement” category for all years.

Source: Authors’ analysis based on data described in text. 
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The study also examined raw scores because it is 
possible that scaling test scores could mask effects 
over time. The range in raw scores was larger, and 
scores trended sharply higher in 2006. But again 
both program and comparison schools showed a 
similar trend, more sharply upward than that of 
the scaled scores (figure 2). 

. . . or interrupted time series analysis

Relying on such strategies alone was not adequate 
to rigorously assess the impact of benchmark 
assessment. To assess the differences between 
program and comparison schools in changes in 
mathematics performance, the study used inter-
rupted time series analysis, which established the 
pre-intervention trend in student performance and 
analyzed the post-intervention data to determine 
whether there was a departure from that trend 
(Bloom, 2003; see appendix D for details). Five 
years of annual pre-implementation data and a 
year of post-implementation data formed the time 
series. The program schools’ implementation of 

the benchmark assessment practice in 2006 was 
the intervention, or “interruption.” 

There was a small but statistically significant 
increase in the program schools in 2006. The 
program schools had slightly higher mean eighth-
grade mathematics scores than what would have 
been expected without the program. But this small, 
statistically significant increase also occurred in 
the comparison schools, where mean mathematics 
scores were slightly above the predicted trend. 

Difference-in-difference analysis underscored 
the similarity between the groups. The program 
effect was about 0.38 of a mathematics test point 
(see appendix D, table D4), but it was not statisti-
cally significant. The most likely interpretation is 
that the achievement of both groups was slightly 
increasing and that the difference between them 
could have been due to chance rather than to any 
program effect. So, though both groups of schools 
saw similar, (slightly) higher than expected in-
creases in their eighth-grade mathematics scaled 
scores in 2006, the small increase for the program 
schools cannot be attributed to the benchmark 
assessments.

Figure 1	

Scaled eighth-grade mathematics scores 
for program and comparison schools in the 
Massachusetts Comprehensive Assessment 
System, 2001–06

Note: Scaled scores are constructed by converting students’ raw scores 
(say, the number of questions correct) on a test in order to yield compa-
rable results across students, test versions, or time.

Source: Authors’ analysis based on data described in text. 
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Raw eighth-grade mathematics scores for 
program and comparison schools in the 
Massachusetts Comprehensive Assessment 
System, 2001–06

Source: Authors’ analysis based on data described in text. 
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Why weren’t effects evident 
after the first program year?

The study found no statistically significant or sub-
stantively important difference between schools in 
their first year implementing quarterly benchmark 
exams in middle-school mathematics and those 
not employing the practice. Why? The finding 
might be because of limitations in the data rather 
than the ineffectiveness of benchmark assessments.

First, data are lacking on what benchmark assess-
ment practices comparison schools may be using, 
because the study examined the impact of a par-
ticular structured benchmarking program. More 
than 70 percent of districts are doing some type of 
formative assessment (Olson, 2005), so it is possible 
that at least some of the comparison schools imple-
mented their own version of benchmarking. Given 
the prevalence of formative assessments under the 
No Child Left Behind Act, it is highly unlikely that 
a project with strictly controlled conditions could 
be implemented (that is, with schools using no for-
mative assessment at all as the comparison group).

Second, the study was underpowered. That means 
that a small but important treatment effect for 
benchmarking could have gone undetected be-
cause there were only 22 program schools and 44 
comparison schools.5 Unfortunately, the sample 
size for program schools could not be increased 
because only 25 schools in the eight districts ini-
tially received the state grants (three schools were 
later dropped). Increasing the comparison school 
sample alone (from 44 to 66, for example) would 
have brought little additional power.

Third, with only one year of post-implementation 
data, it may be too early to observe any impact 
from intervention in the program schools. 

How to better understand the 
effects of benchmark assessments

Although the study did not find any immediate 
difference between schools employing benchmark 

assessments and those not doing so, the report 
provides initial empirical data to inform state and 
local education agencies. 

To understand the longer-term effects of bench-
mark assessments, it would be useful to continue 
to track achievement data in the program and 
comparison schools to reassess the initial find-
ings beyond a single post-intervention year and to 
provide additional data to local and state deci-
sionmakers about the impact of this benchmark 
assessment practice. 

Using student-level data 
rather than school-level 
data might also help 
researchers examine the 
impact of benchmark 
assessment on important 
No Child Left Behind 
subgroups (such as 
minority students or stu-
dents with disabilities). 
By comparing school 
mean scores, as in this 
study, some nontrivial ef-
fects for subgroups may be masked. At the onset of 
the study, only school-level data were available to 
researchers, but since then working relationships 
have been arranged with state education agencies 
for specific regional educational laboratory proj-
ects to use student-level data. 

Another useful follow-up would be disaggregat-
ing the school achievement data by mathematics 
content strand to see if there are any effects on 
particular standards. As the quarterly assess-
ments are broken out by mathematics content 
strand, doing so would connect logically with the 
benchmark assessment strategy. Such an ap-
proach could determine whether the intervention 
has affected particular subscales of mathematics 
in the Massachusetts Curriculum Frameworks. 
This more refined outcome data may be more 
sensitive to the intervention and might also pro-
vide information to the Massachusetts Depart-
ment of Education about which content strands 

To understand the 

longer-term effects of 

benchmark assessments, 

it would be useful 

to continue to track 

achievement data 

in the program and 

comparison schools 

to reassess the initial 

findings beyond a single 

post-intervention year
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schools focused on in their 
benchmark assessments.

Conversations with education de-
cisionmakers support what seems 
to be common sense. Higher 
mathematics scores will come not 
because benchmarks exist but 
because of how the benchmark 
assessment data are used by a 

school’s teachers and leaders. This kind of follow-
up research is imperative to better understand the 
impact of benchmark assessment. 

But the data sources to identify successful 
implementation in a fast-response project can be 

elusive. A possible solution is to examine initial 
district progress reports to the Massachusetts 
grant program. These data may provide insight 
into school buy-in to the initiative, quality 
of leadership, challenges to implementation, 
particular standards that participating districts 
focus on, and how schools use the benchmark as-
sessment data. Researchers may ask whether and 
how the teachers and administrators used the 
benchmark data in instruction and whether and 
how intervention strategies were implemented for 
students not performing well on the benchmark 
exams. Based on the availability and quality 
of the data, the methodology for determining 
the impact of the intervention could be further 
refined. 

Higher mathematics 

scores will come not 

because benchmarks 

exist but because of 

how the benchmark 

assessment data are 

used by a school’s 

teachers and leaders
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Appendix A   
Methodology

This appendix includes definitions of benchmark 
assessments and of the Massachusetts pilot pro-
gram, an overview of the construction of the study 
database, the methodology for creating compari-
son groups, and a description of the data analysis 
strategy. Because implementation of benchmark 
testing was at the school level, the unit of analysis 
was the school. Choosing that unit also boosted 
the statistical power of the study because there 
were 25 program schools in the original design 
rather than eight program districts.6

A quasi-experimental design, with program and 
matched comparison schools, was used to exam-
ine whether schools using quarterly benchmark 
exams in middle-school mathematics under the 
Massachusetts pilot program showed greater 
gains in student achievement after a year than 
schools not in the program. The comparisons were 
between program schools and comparison schools 
on post-intervention changes in mathematics per-
formance. All the analyses were based on (mostly) 
publicly available,7 school-level achievement and 
demographic data maintained by the Massa-
chusetts Department of Education. The primary 
outcome measure was eighth-grade mathematics 
achievement, as assessed by the Massachusetts 
Comprehensive Assessment System (MCAS).

Defining the program

The study defined benchmark assessments as as-
sessments that align with the Massachusetts Cur-
riculum Frameworks Standards, are administered 
quarterly at the school level, and yield student-
level data—quickly available to school-level educa-
tors and administrators—connected to individual 
standards and content strands. 

The study examined a Massachusetts Department 
of Education program targeting middle schools. Be-
cause what constitutes a middle school differs from 
town to town, the study defined middle schools as 
those that include seventh and eighth grades. Other 

configurations (say, grades K–8, 5–9, 6–8, 6–9, 7–8, 
7–9, or 7–12) were acceptable, provided that seventh 
and eighth grades were included.8

For its benchmark assessment initiative, the 
Massachusetts Department of Education selected 
high-poverty middle schools under pressure to 
significantly improve their students’ mathematics 
achievement. To select schools, the Massachusetts 
Department of Education issued a request for 
proposals. The department prioritized funding 
for districts (or consortia of districts) with four 
or more schools in need of improvement, correc-
tive action, or restructuring under the current 
adequate yearly progress status model. The “four 
or more schools” criterion was sometimes relaxed 
during selection. Applications were given priority 
based on the state’s No Child Left Behind perfor-
mance rating system:

Category 1 schools were rated “critically low” •	
in mathematics.

Category 2 schools were rated “very low” in •	
mathematics and did not meet improvement 
expectations for students in the aggregate.

Category 3 schools were rated “very low” in •	
mathematics and did not meet improvement 
expectations for student subgroups.

Category 4 schools were rated “very low” in •	
mathematics and did meet improvement 
expectations for all students. 

Category 5 schools were rated “low” in •	
mathematics and did not meet improvement 
expectations for students in the aggregate.

The Massachusetts Department of Education 
selected 25 schools representing eight districts to 
participate in the pilot initiative. The selection of 
program schools targeted high-poverty schools 
having the most difficulty in meeting goals for 
student mathematics performance, introducing a 
selection bias into the project. Unless important 
variables were controlled for by design and analysis 
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(for example, poverty and pretest or baseline math-
ematics scores), any results would be confounded 
by pre-existing differences between schools. In the 
study, balance was achieved between the pro-
gram and comparison schools on poverty, pretest 
mathematics scores, and other school-level social 
and demographic variables. But because the study 
was based on a quasi-experimental design (without 
random assignment to conditions), it could not 
assess whether the participant and comparison 
groups were balanced on unobserved factors. 

Constructing the study database 

A master database was developed in SPSS to house 
all the necessary data. Data were collected from 
student- or school-level achievement and demo-
graphic data maintained by the Massachusetts 
Department of Education.9 The outcome variable 
was scaled eighth-grade MCAS mathematics 
scores for 2001–06.

The MCAS was implemented in response to the 
Massachusetts Education Reform Act of 1993 and 
fulfills the requirements of the federal No Child 
Left Behind Act of 2001, which requires annual 
assessments in reading and mathematics for 
students in grades 3–8 and in high school. The 
MCAS tests all public school students in Massa-
chusetts, including students with disabilities and 
those with limited English proficiency. The MCAS 
is administered annually and measures student 
performance on the learning strands in the Mas-
sachusetts Curriculum Frameworks (see appendix 
E). In mathematics these strands include number 
sense and operations; patterns, relations, and al-
gebra; geometry; measurement; and data analysis, 
statistics, and probability.

According to the Massachusetts Department of 
Education (2007), the purpose of the MCAS is to 
help educators, students, and parents to:

Follow student progress. •	

Identify strengths, weaknesses, and gaps in •	
curriculum and instruction. 

Fine-tune curriculum alignment with state-•	
wide standards. 

Gather diagnostic information that can be •	
used to improve student performance.

Identify students who may need additional •	
support services or remediation.

The MCAS mathematics assessment contains 
multiple choice, short-answer, and open response 
questions. Results are reported for individual 
students and districts by four performance levels: 
advanced, proficient needs improvement, and 
warning. Each category corresponds to a scaled 
score range (see appendix E, table E1). Although 
the scaled score was the primary outcome variable 
of interest, the corresponding raw score was also 
collected to determine if scaled scores might have 
masked program effects.

The MCAS mathematics portion, comprising two 
60-minute sections, is administered in May in 
grades 3–8. Students completing eighth grade take 
the MCAS in the spring of the eighth-grade year. 
Preliminary results from the spring administra-
tion become available to districts the next August. 
Eighth graders who enter in the 2007/08 school 
year, for example, take MCAS mathematics in May 
2008, and their preliminary results become avail-
able in August 2008.

Other variables gathered for the study included the 
school name, grade structure, and enrollment, the 
race and ethnicity of students, and the proportion 
of limited English proficiency and low-income stu-
dents. Demographic data were transformed from 
total numbers to the percentage of students in a 
category enrolled at the school (for example, those 
defined as low income). Supplementary geographic 
location data were added from the National Center 
for Educational Statistics, Common Core of Data  
to identify school location (urban, rural, and so on). 
A variable was also created to designate each school 
as a program or comparison school based on the 
results of the matching procedure. See appendix B 
for the specific steps in constructing the database.
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Creating a comparison group

Only a well implemented randomization pro-
cedure controls for both known and unknown 
factors that could influence or bias findings. But 
because the grants to implement benchmark 
assessments were already distributed and the 
program was already assigned to schools, random 
assignment to conditions was not possible. So, it 
was necessary to use other procedures to create 
a counterfactual—a set of schools that did not 
receive the program. 

The study used covariate matching to create a 
set of comparison schools (appendix C details 
the matching procedure). Using covariates in 
the matching process is a way to control for the 
influence of specific factors on the results. In 
other words, the comparison schools would be 
as similar as possible to the program schools (in 
the aggregate) on these factors, meaning that any 
findings, whether positive or negative, would be 
unlikely to have been influenced by these factors. 
The variables used in the matching procedure in-
cluded a composite index of school-level social and 
demographic variables: enrollment, percentage of 
students classified as low income, percentage of 
students classified as English language learners, 
and percentage of students categorized in differ-
ent ethnic groups. Also included in the match-
ing procedure were each school’s eighth-grade 
baseline (or pretest) mathematics score (based on 
an average of its 2004/05 eighth-grade mathemat-
ics scores) and the type of geographic location the 
school served (classified according to the National 
Center for Education Statistics’ Common Core of 
Data survey).

Prior research guided the selection of the variables 
used as covariates in the matching. Bloom (2003) 
suggests that pretest scores are perhaps the most 
important variable to use in a matching proce-
dure. Pretest–post-test correlations on tests like 
the MCAS can be very high, and it is important 
that the comparison group and program group are 
as similar as possible on pretest scores. By taking 
into account the 2004/05 average eighth-grade 

mathematics scores (also known as the Composite 
Performance Index), the report tried to ensure 
that the comparison schools are comparable on 
baseline mathematics scores.

There is substantial research that identifies large 
gaps in academic achievement for racial minori-
ties (Jencks & Phillips, 1998), low-income students 
(Hannaway, 2005), and English language learners 
(Abedi & Gandara, 2006). Unless these influences 
were controlled for, any observed differences 
might have been due to the program or compari-
son schools having a higher share of students in 
these categories rather than to benchmarking. 
Although the research on the relationship between 
school size and academic achievement is some-
what conflicting (Cotton, 1996), the variability 
in school size led the report to introduce into the 
matching procedure the total enrollment in the 
middle school. 

The eligibility pool for the comparison matches in-
cluded the 389 Massachusetts middle schools that 
did not receive the Comprehensive School Reform 
grants. Statistical procedures were used to identify 
the two best matches for each program school 
from the eligibility pool. The covariate matching 
resulted in a final sample of 22 program schools 
and 44 comparison schools that were nearly 
identical on pretest academic scores.10 In addition, 
the project design achieved balance on nearly all 
school-level social and demographic characteris-
tics, except that there were larger shares of African 
American and Pacific Islander students in pro-
gram schools. These differences were controlled 
for statistically in the outcome analysis, with no 
change in the results (see appendix D). 

Analyzing the data

After matching, descriptive statistics were used 
to examine the mean scores for all five pre-im-
plementation years and one post-implementation 
year for the program and comparison schools. A 
comparative interrupted time series analysis was 
also used to more rigorously assess whether there 
was a statistically significant difference between 



12	M easuring how benchmark assessments affect student achievement

the program and comparison schools in changes 
in mathematics performance (see Bloom, 2003; 
Cook & Campbell, 1979). The interrupted time 
series design was meant to determine whether 
there was any change in the trend because of the 
“interruption” (program implementation). 

The method for short interrupted time series in 
Bloom (2003) was the analysis strategy. Bloom 
argues that the approach can “measure the impact 
of a reform as the subsequent deviation from the 
past pattern of student performance for a specific 
grade” (p. 5). The method establishes the trend 
in student performance over time and analyzes 
the post-intervention data to determine whether 
there was a departure from that trend. This is a 
tricky business, and trend departures can often be 
statistically significant. It is important to rule out 

other alternative explanations for any departure 
from the trend, such as change in principals, other 
school reform efforts, and so on. Although Bloom 
outlines the method for use in evaluating effects 
on a set of program schools alone, having a well 
matched group of comparison schools strengthens 
causal inferences. 

To project post-implementation mathematics 
achievement for each school, both linear baseline 
trend models and baseline mean models (see 
Bloom, 2003) were estimated using scaled and 
raw test score data collected over five years before 
the intervention. Estimates of implementation 
effects then come from differences-in-differences 
in observed and predicted post-implementation 
test scores between program and comparison 
schools. 
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Appendix B   
Construction of the study database

The following outlines the specific steps taken to 
construct the study database:

Identify all the middle schools in 1.	
Massachusetts.

Identify the 25 program schools using bench-2.	
mark assessments in mathematics.

Collect the following variables from the 3.	
Massachusetts Department of Education web 
site on each of the schools—to proceed to the 
covariate matching exercise that will identify 
two matched comparison schools for each 
program school:

School name. a.	

Source: http://profiles.doe.mass.edu/i.	
enrollmentbygrade.aspx.

CSR implementation.b.	

School locale (urban, rural, and so on).c.	

Source: http://nces.ed.gov/ccd/i.	
districtsearch/.

Does the school have a 6th grade?d.	

Source: http://nces.ed.gov/ccd/i.	
districtsearch/.

Does the school have an eighth grade? e.	

Source: http://nces.ed.gov/ccd/i.	
districtsearch/.

Total enrollment.f.	

Source: http://profiles.doe.mass.edu/i.	
enrollmentbygrade.aspx.

Race/ethnicity of student population.g.	

Source: http://profiles.doe.mass.edu/i.	
enrollmentbyracegender.aspx?mode
=school&orderBy=&year=2006.

Limited English proficiency.h.	

Number of students.i.	

Source: http://profiles.doe.mass.1.	
edu/selectedpopulations.aspx 
?mode=school&orderBy=& 
year=2006.

Percentage of limited English profi-ii.	
ciency students

Number of limited English profi-1.	
ciency students / total enrollment

Low incomei.	

Number of low-income students.i.	

Source: http://profiles.doe.mass.1.	
edu/selectedpopulations.aspx 
?mode=school&orderBy=& 
year=2006.

Percentage of low-income students.ii.	

Number of low-income students 1.	
/total enrollment.

Mathematics baseline proficiency index.j.	

Source: http://www.doe.mass.edu/i.	
sda/ayp/cycleII.

Seven program schools had missing data for the 
mathematics baseline proficiency index, which 
was serving as the measure for academic per-
formance for each school in the matching equa-
tion. Therefore, it was substituted with the 2005 
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mathematics Composite Proficiency Index (CPI) 
score to get an accurate academic measure for each 
school. The 2005 mathematics CPI score was taken 
from “1999–2006 AYP History Data for Schools,” 
which can be found at http://www.doe.mass.edu/
sda/ayp/cycleIV/. 

Charter and alternative schools were deleted 4.	
from the master file because they would not 
have been eligible for the initial program and 
because their populations differ significantly 
in many cases from those of regular schools.

After the covariate matching was performed 5.	
on this database, a new variable, STUDY 
GROUP, was created to determine if a school 
is defined as a program school, a comparison 
school, or an “other” school.

The following additional variables on achieve-6.	
ment scores were collected for the schools that 

were either program or comparison schools 
(English scaled and raw scores were also col-
lected and added to the database):

2001 mathematics achievement mean a.	
scaled score and mean raw score.

2002 mathematics achievement mean b.	
scaled score and mean raw score.

2003 mathematics achievement mean c.	
scaled score and mean raw score.

2004 mathematics achievement mean d.	
scaled score and mean raw score.

2005 mathematics achievement mean e.	
scaled score and mean raw score.

2006 mathematics achievement mean f.	
scaled score and mean raw score.
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Appendix C   
Identification of comparison schools

Random assignment to study the impact of bench-
mark assessment was not possible because selected 
districts and schools had already been awarded 
the Comprehensive School Reform grants. When 
members of the group have already been as-
signed, the research team must design procedures 
for developing a satisfactory comparison group. 
Fortunately, researchers have been developing 
such methods for matching or equating individu-
als, groups, schools, or other units for comparison 
in an evaluation study for many years. And as one 
might imagine, there are many such statistical ap-
proaches to creating comparison groups. All such 
approaches, however, have one limitation that a 
well implemented randomized study does not: the 
failure to control for the influence of “unobserved” 
(unmeasured or unknown) variables. 

Of the many statistical equating techniques, one of 
the more reliable and frequently used is covariate 
matching. How does “covariate matching” work? 

Let’s say we have unit “1” already as-
signed to the program and wish to match 
another unit from a pool of observations 
to “1” to begin creating a comparison 
group that did not receive the program. 
When using covariate matching, the 
research team would first identify the 
known and measured factors that would 
be influential on the outcome (in this in-
stance, academic performance) regardless 
of the program. Influential in this case 
means that less or more of that charac-
teristic has been found—independent 
of the program—to influence scores on 
the outcome measure. These are known 
as covariates. To reduce or remove their 
influence on the outcome measure, one 
would select the unit that is closest to “1” 
on those covariate scores or character-
istics. Let’s say that “X” is the closest in 
the eligibility pool to “1.” By matching 
“X” to “1,” there would be two units that 

are very similar on the covariates. If this 
is done for each program unit, theoreti-
cally the influence of the covariates will 
be removed (or considerably reduced), the 
differences between the groups on impor-
tant known factors will be ameliorated, 
and a potential explanation for observed 
results besides program effectiveness or 
ineffectiveness (that the groups were dif-
ferent before the program on important 
covariates) will be seriously countered 
(Rubin, 1980).

For the current project, covariate matching is 
used to create a set of comparison schools for 
the study.11 The original proposal was to match 
comparison schools using three factors: the 
Socio-Demographic Composite Index (SCI); the 
school’s adjusted baseline academic performance, 
holding constant the school’s SCI; and the type of 
geographic location the school sits in (urban, sub-
urban, rural, and so on). Using two comparison 
schools for each program school was eventually 
chosen to counter the possibility of idiosyncratic 
matching.

The first order of business was to create the SCI. 
The SCI is simply the “predicted” mathematics 
score (using the school’s 2005 average baseline 
mathematics score), using a multivariate regression 
analysis, for each school based on a series of social 
and demographic covariates. In other words, it is 
a prediction of students’ 2005 mathematics score 
using important covariates such as school enroll-
ment, percentage of low-income students, percent-
age of English language learners, and percentage 
of minority/ethnic groups.12 In short, multivariate 
regression was used to predict what the average 
mathematics score for the school is, given knowl-
edge about the school’s characteristics (how many 
kids are enrolled, the percentage of low-income 
students, the percentage of English language learn-
ers, and the percentage of minority students).13

One of the advantages in using multivariate 
regression is that the factors comprising the SCI 
are weighted proportionately to how much of the 
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2005 mathematics score they predict. For example, 
if poverty is a more substantial factor in school 
success than enrollment, the regression will give 
more weight to the percentage of low-income 
students that a school has than the school’s total 
enrollment. This is exactly what happened with 
the results. Table C1 provides the SCI for five 
middle schools with varying percentages of low-
income students. As the percentage of low-income 
students increases, SCI decreases.

The other covariate used in the matching proce-
dure is the school’s adjusted academic score. This 
is simply the actual score minus the predicted 
score. In other words, if the SCI is subtracted from 
the 2005 CPI mathematics score, the result is the 
adjusted value that was used as the other major co-
variate in the matching procedure. Table C2 shows 
this relationship (numbers do not add up perfectly 
because of rounding).

The multivariate regression was conducted in both 
Stata and SPSS and, as might be expected, there 
was perfect agreement on the results.

What next? Finding similar schools using 
Mahalanobis Distance measures

Variables like SCI and the adjusted mathematics 
score form a “multidimensional space” in which 
each school can now be plotted.14 The middle 
of this multidimensional space is known as a 

“centroid.”15 The Mahalanobis Distance can be 
computed as the distance of a case or observa-
tion (such as a school) from the centroid in this 
multidimensional space. Schools with similar Ma-
halanobis Distance measures are considered to be 
“close” in this multidimensional space, and there-
fore more similar. One way to think about how 
Mahalanobis Distance measures are computed is 
shown in the figure at http://www.jennessent.com/
images/graph_illustration_small_4.gift.

Using a specialized software program (Stata), 
Mahalanobis Distance measures were computed 
for each of the 410 eligible middle schools in the 
state.16 Table C3 provides the SCI, the adjusted 
mathematics achievement score, and the Ma-
halanobis Distance measure for five schools. If 
school 1 was a program school and the remaining 
4 schools formed the pool for comparison schools, 
the best match according to the analysis would be 
school 2, because the Mahalanobis Distance mea-
sure for school 2 is more similar to school 1 than 
any of the other potential schools.

Note that the study plan required that two schools 
had to be matched to each program school. The 23 
schools remaining in the program group required 
46 comparison schools. To complete the match-
ing process, a list was printed of the 23 program 
schools with the Mahalanobis Distance measure 
and its population geographic area code (that is, the 

Table C1	

Percentage of low-income students and 
Socio-Demographic Composite Index for five 
selected schools 

School

Percentage of  
low-income 

students
Socio-Demographic 

Composite Index

School 1 0 86

School 2 10 77

School 3 25 68

School 4 75 54

School 5 95 47

Source: Authors’ analysis based on data described in text.

Table C2	

2005 Composite Performance Index mathematics 
score, Socio-Demographic Composite Index, and 
“adjusted” academic score for five selected schools

School

2005 
Composite 

Performance 
Index 

mathematics

Socio-
Demographic 

Composite Index
“Adjusted” 

score

School 1 90 86 4

School 2 80 77 3

School 3 59 68 –10

School 4 51 54 –3

School 5 50 47 2

Source: Authors’ analysis based on data described in text.
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type of geographic location the school serves, such 
as small urban or suburban), as schools were classi-
fied according to the National Center for Education 
Statistics Common Core of Data. A similar list was 
printed of the 387 remaining middle schools that 
comprised the potential schools for comparison 
matching. The matching was conducted by simply 
selecting the two schools with the closest Ma-
halanobis Distance measures and with the exact or 
very similar population geographic area code. This 
is also known as “nearest neighbor matching.” The 
initial matching resulted in 46 comparison schools 
matched to 23 program schools. The findings are 
presented in table C4.

Because there are a variety of matching meth-
ods, and some variations on using Mahalanobis 
Distance measures for matching, replication of the 
findings was initiated.17 

David Kantor developed a different procedure for 
using Mahalanobis Distances to form a compari-
son group in Stata called Mahapick.18 Rather than 
compute Mahalanobis Distance measures from 
the centroid of a multidimensional space, as in 
the earlier procedure, Mahapick creates a measure 
based on the distance from a treated observation 
to every other observation. It then chooses the best 
matches for that treated observation and makes a 
record of these matches. It then drops the mea-
sure and goes on to repeat the process on the next 
treated observation.

Because Mahapick uses a different method and 
produces a different Mahalanobis Distance score, 
the goal was not to confirm whether the scores were 
identical. The goal was to see if a similar set of schools 
was constructed using a different matching method.19 

One problem with using Mahapick is that the 
computation does not produce exclusive matches. 
The procedure selected 12 duplicate matches. Nine 
schools, however, were the results of exact matches 
in both procedures. Nearly half of the schools were 
selected by both (22 of 46), and this number might 
have been higher had Mahapick selected exclusive 
matches, that is, if it had not matched one com-
parison school to more than one program school.

Both methods produced a large number of mid-
sized urban schools with Mahalanobis Distance 
scores that clustered very closely together. This 
is not surprising, as the Mahalanobis Distance 
measure scores (using the initial Stata procedure) 
for the program schools clustered between 12.25 
and 31.56. This meant that the comparison group 
schools would likely be drawn from schools in 
the eligible pool whose distance measure scores 
also fell into this range. Of the 387 schools in the 
eligibility pool, 166 had Mahalanobis Distance 
measure scores of 12.25–31.56 (43 percent). 

Because the two procedures did not produce the 
exact 46 comparison schools, a combination of 
the results from the initial Stata procedure and 
Mahapick was used to select the next iteration. 
Putting the nine exact matches produced by both 
procedures aside, 37 comparison schools were left 
to identify. The selected matches for each program 
school provided by the initial Stata procedure and 
Mahapick were examined. Once two comparison 
schools for a program school were selected, they 
were removed from consideration. In those cases 
in which there were more than two schools identi-
fied by the two matching procedures, the one with 
the higher adjusted 2005 mathematics score was 
selected. This decision is a conservative one and 
initially presents a bias favoring the comparison 
group. The results of using both procedures to 
perform the matching are provided in table C6. 

Table C3	

Socio-Demographic Composite Index, “adjusted” 
academic score, and Mahalanobis Distance score 
for five selected schools

School

Socio-
Demographic 

Composite Index
“Adjusted” 

score

Mahalanobis 
Distance 

score

School 1 86 4 49.18

School 2 77 3 38.54

School 3 68 –10 32.30

School 4 54 –3 19.15

School 5 47 2 14.87

Source: Authors’ analysis based on data described in text.
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Following this matching procedure, the pretest 
achievement data files from 2001–05 were added. 
During this process, it became known that 1 of the 
original 25 schools, because it is a reconfigured 
school, did not have pretest data for eighth grad-
ers. This school was dropped from the program 
sample (along with the corresponding two com-
parison schools). In addition, another school from 
the original matching set was dropped because it 
too did not have eighth-grade pretest data. It was 
replaced with another comparable school. 

How well did the matching procedure work?

To test the effectiveness of the matching proce-
dure, the 22 program schools and 44 comparison 
schools were compared across the variables in the 
school-level dataset. Table C4 presents the results 

from that comparison. In summary, the equating 
or matching process resulted in certain variables 
favoring the comparison schools (for example, 
higher baseline mathematics and English/lan-
guage arts scores). Some of this might be due to 
the matching procedure as comparison schools 
with a higher 2005 adjusted mathematics score 
were selected when there was more than one pos-
sible school to pick from for a match. Two of the 
variables were statistically significant (2005 base-
line mathematics scores and percentage of African 
American students). 

Both of these differences were troubling, especially 
given that they were included in the covariate 
matching process. To further investigate whether 
there were systemic differences between the 
program and comparison schools on the pretest 

Table C4	

Comparison of means and medians of initial program and comparison schools 

Characteristic

Program schools 
(N=22)

Comparison schools 
(N=44)

Mean Median Mean Median

2005 Mathematics Composite Performance Index 53.10* 53.80* 60.56* 59.85*

2005 English language arts Composite Performance Index 69.51 69.50 74.17 76.90

Enrollment 620.23 635.00 562.95 578.50

Low-income students (percent) 61.32 64.60 54.71 51.70

English language learners (percent) 16.74 13.90 11.23 7.80

African American (percent) 7.45* 6.10* 14.99* 10.05*

Hispanic (percent) 29.81 23.00 26.40 14.10

Asian (percent) 9.60 4.00 6.60 5.20

White (percent) 51.80 55.20 49.80 47.60

Native American (percent) 0.26 0.20 0.41 0.25

Hawaiian/Pacific Islander (percent) 0.11 0.00 0.08 0.00

Multi-race non-Hispanic (percent) 1.00 0.70 1.73 1.30

Race-ethnicity composite (percent) 48.20 44.90 50.20 52.40

Highly qualified teachers (percent) 90.10 91.90 89.40 94.70

School location Number Percent Number Percent

Mid-size city 17 77.30 34 77.30

Urban fringe of large city 3 13.60 6 13.60

Urban fringe of mid-size city 2 9.10 4 9.10

* Statistically significant at the 0.05 level using a t-test (two-tailed).

Note: Race-ethnicity composite is the sum African American, Hispanic, Asian, Native American, Hawaiian, Pacific Islander, and multirace non-Hispanic. 

Source: Authors’ analysis based on data described in text.
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achievement years, analyses of scaled eighth-grade 
mathematics scores for each year of pretest data 
available were examined. The differences between 
the two groups for each year of pretest data were 
statistically significant and favored the compari-
son schools. Table C5 presents the results of the 
t-tests. Rerunning the t-tests using raw scores did 
not change the results.

Resolving matching problems

Revisiting the “conservative tie-breaker.” Note 
that when there were multiple schools eligible 
for the matching, the school that had higher 
achievement scores (using the 2005 CPI baseline 
measure) was selected. This might have explained 
the lack of equivalence on the pretest baseline 
mathematics scores, with the procedure inflat-
ing these pretest scores. Because achievement 
scores are highly correlated and the 2005 CPI 

actually represents an average of the 2004 and 
2005 MCAS mathematics scores, it was reason-
able to assume that this conservative decision 
was responsible for the lack of equivalence across 
all years.

Surprisingly, however, when the data were 
closely examined, the equivalence problem did 
not exist for only schools with the “conservative 
tie-breaker” decision. The higher pretest scores 
for the comparison schools were consistent across 
most of the program schools, including those 
where such choices were not made. This led to 
further investigations.

Revisiting Mahapick. Mahapick does not permit 
exclusive matches, so running the procedure 
results in the same schools getting selected as 
comparisons for more than one program school. 
This happened with eleven schools. One attempt 

Table C5	

T-test for differences in pretest mathematics scores between initial program and comparison schools, 2001–05

T-statistic t-statistic Difference
Significance 
(two-tailed)

Mean 
difference

Standard 
error 

difference
95 percent confidence 

interval of the difference

Mathematics 2001 grade 8 scaled score

Equal variances assumed –2.161 50.000 0.036 –3.72213 1.72237 –7.18162 –0.26265

Equal variances not assumed –2.480 44.996 0.017 –3.72213 1.50087 –6.74506 –0.69921

Mathematics 2002 grade 8 scaled score

Equal variances assumed –2.431 51.000 0.019 –4.33164 1.78158 –7.90832 –0.75496

Equal variances not assumed –2.918 48.594 0.005 –4.33164 1.48465 –7.31579 –1.34749

Mathematics 2003 grade 8 scaled score

Equal variances assumed –2.043 55.000 0.046 –3.11489 1.52486 –6.17077 –0.05900

Equal variances not assumed –2.362 47.665 0.022 –3.11489 1.31898 –5.76736 –0.46241

Mathematics 2004 grade 8 scaled score

Equal variances assumed –2.070 59.000 0.043 –3.04558 1.47100 –5.98904 –0.10212

Equal variances not assumed –2.369 48.800 0.022 –3.04558 1.28561 –5.62938 –0.46179

Mathematics 2005 grade 8 scaled score

Equal variances assumed –2.342 64.000 0.022 –3.24972 1.38767 –6.02191 –0.47753

Equal variances not assumed –2.723 60.799 0.008 –3.24972 1.19360 –5.63664 –0.86281

Mathematics 2006 grade 8 scaled score

Equal variances assumed –1.945 64.000 0.056 –2.91159 1.49668 –5.90155 0.07837

Equal variances not assumed –2.103 51.800 0.040 –2.91159 1.38451 –5.69006 –0.13312

Source: Authors’ analysis based on data described in text.
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to remedy this problem: Mahapick creates the best 
match for each program observation (in this case, 
the program school), beginning with the very first 
case. By removing the two comparison schools 
after each match is made, the problem of non
exclusive selections is eliminated.

Mahapick was therefore used in this way, run-
ning 22 separate analyses, or one separate analysis 
for each program school. As the two comparison 
matches were made, they were eliminated from 
the next run, and so on, until the Mahapick 
procedure selected the 44 unique comparison 
schools that were needed. Although the results of 
this procedure produced a set of schools that were 
closer on the pretest achievement measures (dif-
ferences were not significant), the measures were 
still higher for comparison schools than program 
schools during 2001 and 2002 and close to signifi-
cant (table C6). 

Adding the 2005 CPI mathematics baseline score 
as an additional “sort” variable. Finally, it was 
determined that the best way to create equiva-
lence on the pretest achievement measures was to 
redo the sort and match again. This time, instead 
of sorting solely on the Mahalanobis Distance 
measure score and geographic location, the 2005 
CPI baseline mathematics score was included. 
Printouts of both program and potentially eligible 
comparison schools sorted on these three variables 
were prepared. The priority was to ensure that 
schools were as close as possible on the 2005 CPI 
baseline mathematics score and distance measure 
within each geographic location category. The 
use of the 2005 CPI baseline mathematics score 
together with the distance measure resulted in a 
new set of 44 comparison schools. Note that one 
new comparison school did not have any pretest 
achievement data and was replaced with a similar 
school. Although there was considerable overlap 

Table C6	

T-test for differences in pretest scaled mathematics scores, 2001–05 (Mahapick sample)

T-statistic t-statistic Difference
Significance 
(two-tailed)

Mean 
difference

Standard 
error 

difference
95 percent confidence 

interval of the difference

Mathematics 2001 grade 8 scaled score

Equal variances assumed –1.428 46.000 0.160 –2.55277 1.78826 –6.15235 1.04681

Equal variances not assumed –1.616 44.688 0.113 –2.55277 1.57942 –5.73450 0.62895

Mathematics 2002 grade 8 scaled score

Equal variances assumed –1.514 47.000 0.137 –2.41042 1.59251 –5.61413 0.79329

Equal variances not assumed –1.704 44.217 0.095 –2.41042 1.41459 –5.26095 0.44011

Mathematics 2003 grade 8 scaled score

Equal variances assumed –0.803 50.000 0.426 –1.15321 1.43681 –4.03912 1.73270

Equal variances not assumed –0.884 44.829 0.382 –1.15321 1.30506 –3.78200 1.47559

Mathematics 2004 grade 8 scaled score

Equal variances assumed –0.167 58.000 0.868 –0.23275 1.39500 –3.02515 2.55966

Equal variances not assumed –0.186 46.255 0.853 –.23275 1.25220 –2.75292 2.28743

Mathematics 2005 grade 8 scaled score

Equal variances assumed –0.303 63.000 0.763 –0.34596 1.14138 –2.62682 1.93491

Equal variances not assumed –0.326 51.785 0.745 –0.34596 1.05996 –2.47313 1.78122

Mathematics 2006 grade 8 scaled score

Equal variances assumed –0.261 64.000 0.795 –0.36091 1.38324 –3.12426 2.40244

Equal variances not assumed –0.272 47.280 0.786 –0.36091 1.32468 –3.02541 2.30359

Source: Authors’ analysis based on data described in text.
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with the earlier listings of schools, the t-tests of 
equivalence showed a near perfect balance on the 
pretest achievement measures (table C7).

The one variable that remained statistically 
significant was the difference on the percentage of 
African American students enrolled in the school. 
One possible reason for this imbalance is that the 
state grants were provided to a rather constricted 
range of middle schools in Massachusetts. These 
were mostly small city urban schools with diverse 
populations, and the average 2005 CPI mathemat-
ics score was clustered to the lower or middle part 
of the distribution. With all these factors in play, 

there was a limited pool of comparison schools for 
achieving perfect balance on all pre-existing vari-
ables. Taylor (1983) notes that matching on some 
variables may result in mismatching on others.

The final set of matches represents the most rigor-
ous set of comparison schools that could have 
been selected given the limited eligibility pool. 
Although the imbalance on the percentage of 
African American students enrolled at the schools 
remains troubling,20 the variable (“AFAM”) was 
introduced as a covariate in the final time series 
analysis. It makes no difference in the results (see 
appendix D).

Table C7	

Comparison of means and medians of final program and comparison schools

Characteristic

Program schools 
(N=22)

Comparison schools 
(N=44)

Mean Median Mean Median

2005 Mathematics Composite Performance Index 53.10 53.80 52.82 54.25

2005 English language arts Composite Performance Index 77.15 77.05 73.86 74.05

Enrollment 620.23 635.00 547.73 577.50

Low-income students (percent) 61.32 64.60 62.92 65.50

English language learners (percent) 16.74 13.90 11.02 9.90

African American (percent) 7.45* 6.10* 15.36* 11.30*

Hispanic (percent) 29.81 23.00 33.93 26.65

Asian (percent) 9.58 4.00 5.24 2.85

White (percent) 51.77 55.15 43.48 37.95

Native American (percent) 0.26 0.20 0.36 0.25

Hawaiian/Pacific Islander (percent) 0.11* 0.00* 0.02* 0.00*

Multi-race non-Hispanic (percent) 1.00 0.70 1.60 1.25

Race-ethnicity composite (percent) 48.22 44.90 56.52 62.05

Highly qualified teachers (percent) 90.08 91.90 86.42 88.55

School location Number Percent Number Percent

Mid-size city 17 77.3 34 77.3

Urban fringe of large city 3 13.6 6 13.6

Urban fringe of mid-size city 2 9.1 4 9.1

* Statistically significant at the 0.05 level using a t-test (two-tailed).

Note: Race-ethnicity composite is the sum African American, Hispanic, Asian, Native American, Hawaiian, Pacific Islander, and multirace non-Hispanic. 

Source: Authors’ analysis based on data described in text.
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Appendix D   
Interrupted time series analysis

Conventional interrupted time series analysis 
generally requires multiple data points before 
and after an intervention (or “interruption”) and 
the use of administrative or other data that is 
regularly and uniformly collected over time. It is 
common, for example, in interrupted time series 
analyses of the effects of laws or policies on crime 
for researchers to use monthly or weekly crime 
data to create more pretest and post-test points. 
All things being equal, the more data points in a 
time series, the more stable the analysis.

In education some commonly used achievement 
outcomes (such as standardized mathematics test 
scores) are usually administered once per year. 
Thus, the multiple pretests and post-tests that 
are common to conventional time series analyses 
may not be available when evaluating the impact 
of school innovations on student achievement. In 
this report, only five years of annual mathematics 
test score data and one post-test administration 
were available. Clearly, with only six data points, 
it would not be possible to conduct conventional 
time series analysis.

Bloom’s (2003) method for “short interrupted time 
series,” outlined in an evaluation of Accelerated 
Schools by MDRC, served as the analysis strategy. 
In short, Bloom (2003) argues that his approach 
can “. . . measure the impact of a reform as the 
subsequent deviation from the past pattern of 
student performance for a specific grade” (p.5). 
Bloom’s method establishes the trend in student 
performance over time and then analyzes the post-
program data to determine if there is a departure 
from that trend. As noted in the report, this is a 
tricky business, and trend departures can often be 
statistically significant. Although Bloom (2003) 
outlines his approach for use in evaluating the 
impact on a set of program schools alone, he rec-
ognizes the importance of having a well matched 
comparison group of schools to strengthen causal 
inferences. 

Note, however, that Bloom’s (2003) paper describes 
an evaluation that had five full years of student-
level test score data and five full years of post-test 
student-level data. In this report, available at this 
time are only school-level means for one post-
intervention year. Bloom (2003) may argue that 
this is not a fair test, as one year does not allow 
the school reform to be implemented to its fullest 
strength. Nonetheless, this should be viewed as 
a valuable foundational effort in the Regional 
Educational Laboratory’s research on the impact 
of benchmark assessment.

Reconstructing the database

The first order of business was to convert the da-
tabase from one in which each row represented all 
the data for each school (66 rows of data) to one in 
which each row represented a different year of ei-
ther pretest or post-test information. For example, 
the 44 comparison group schools represented 
230 unique rows of data; the 22 program schools 
represented 115 distinct rows of pretest or post-test 
information. The database, after reconstruction, 
consisted of 345 total rows of data (rather than 66). 
Variables were also renamed and reordered in the 
database, to ease analysis.21

A series of models analogous to Bloom’s (2003) 
recommendations was then run to determine, 
using more advanced statistical analysis, whether 
there was any observed program impact on 
eighth-grade mathematics outcomes. Bloom’s 
paper provides three potential time series models 
to take into account when constructing statisti-
cal analyses, and each has different implications 
for how the analysis is done. Bloom argues that 
the type of statistical model must take into ac-
count the type of trend line for the data. The three 
models include the linear trend model (in which 
the outcome variable increases incrementally 
over time), the baseline mean model (in which 
the outcome variable appears to be a flat line over 
time with no discernible increase or decrease), and 
the nonlinear baseline trend model (in which the 
outcome scores may be moving in a curvilinear or 



	A ppendix D	 23

other pattern). The outcome data from the pretests 
clearly showed that the most applicable model was 
likely the baseline mean model, but given that 
there was a slight increase over time (from 2001 to 
2006), the linear trend model could not be ruled 
out. So the analyses were run using both models. 

For each of the two models, analyses were run 
to determine if there was an effect in 2006 for 
program and comparison schools separately—a 
difference-in-difference effect (or effect between 
program and comparison schools)—and then 
covariates were introduced to determine if any of 
the estimates changed for time or for program im-
pact when variables such as percentage of African 
American students enrolled at the schools were 
introduced.22 Variables used in the analysis are 
described in table D1.

First, using a “baseline mean model” as described 
by Bloom (2003), the researchers investigated if 

there was a perceptible immediate change from 
2001–05 to 2006. This was done for comparison 
schools and program schools separately. When 
looking at program schools alone in table D2, 
there appears to be a significant increase in 2006. 
This increase (“Y2006”) represents a 1.86 test point 
improvement over what would have been expected 
in the absence of the program.

It would have been possible to conclude that 
benchmark assessment had a statistically signifi-
cant and positive impact on the implementation 
year mathematics outcomes from the results in 
table D2. But table D3 highlights the importance 
of the comparison group. The results for 44 com-
parison schools also show a significant increase in 
2006. The increase is modest (1.48 test points) but 
also statistically significant. Thus, both program 
and comparison schools experienced significant 
and positive upward trends in 2006 that departed 
from past performance.

The difference-in-difference test, which is the most 
critical because it provides a direct comparison be-
tween the program and comparison schools, shows 
no significant difference, as highlighted in table D4. 
There is a significant increase in 2006, as expected, 

Table D1	

Variables used in the analysis

Variable Description

Afam
Percent of students enrolled in the school 
who are African American. 

Asian
Percent of students enrolled in the school 
who are Asian.

Hisp
Percent of students enrolled in the school 
who are Hispanic.

Hqtper
Percent of highly qualified teachers at the 
school.

Itreat_1 Effect from being in the program.

Intercept Mean scores.

IY2006_1
Score increase in 2006, combining treatment 
and comparison schools.

Iy20xtre~1
Interaction term between the year 2006 and 
whether a school was in the program.

Lepper
Percent of students in the school classified 
as “limited English proficiency.”

Lipper
Percent of students in the school classified 
as “low income.”

Totenrl Number of students enrolled at the school.

White
Percent of students enrolled in the school 
who are White.

Y2006 Score increase in 2006.

Table D2	

Baseline mean model, program schools 
only (N=22 schools, 115 observations)

Variable Coefficient
Standard 

error Probability

Intercept 225.11 0.822 0.000

Y2006 1.86 0.556 0.001

Source: Authors’ analysis based on data described in text.

Table D3	

Baseline mean model, comparison schools 
only (N=44 schools, 230 observations)

Variable Coefficient
Standard 

error Probability

Intercept 224.69 0.781 0.000

Y2006 1.48 0.57 0.009

Source: Authors’ analysis based on data described in text.
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as this analysis combines the program and compar-
ison schools (“IY2006_1”). Whether a school was in 
the program or comparison group did not appear 
to have any impact (“Itreat_1”). But the key variable 
is the interaction between year 2006 and whether a 
school was in the program group, as represented by 
“Iy20xtre~1.” The program effect is about 0.38 of a 
mathematics test point, but it is not significant and 
could have occurred by chance alone. The most ac-
curate interpretation is that both groups are slightly 
increasing, but the difference between them is neg-
ligible. Therefore, any observable increase cannot be 
attributed to the program.

Although covariates should have been controlled 
by the matching procedure, analyses in appendix 
C showed that there were some differences on 
racial/ethnic variables. These and other covariates 
were introduced into the difference-in-difference 
analyses to see if the estimate for program effects 
would change. As the reader can see from table 
D5, the introduction of a number of variables into 
the regression did not change the estimate for 
program impact. 

The same analyses described above were repeated, 
but the “linear trend model” outlined in Bloom 
(2003) was now assumed instead of the baseline 
mean model. Assuming different models simply 
means that different statistical formulae were used 
to conduct the analyses. Table D6 presents the data 
for program schools alone. The table shows that 
when time is controlled in the analysis, the statis-
tically significant effect for Y2006 (for the program 
separately) disappears. 

The analysis for comparison schools alone was re-
peated in table D7. Again, the statistically signifi-
cant findings, assuming the baseline mean model, 
drop when assuming the linear trend model. 

Table D6	

Linear trend model, program schools 
only (N=22 schools, 115 observations)

Variable Coefficient
Standard 

error Probability

Intercept 224.370 0.825 0.000

Y2006 0.975 0.741 0.180

Time 0.325 0.174 0.060

Source: Authors’ analysis based on data described in text.

Table D7	

Linear trend model, comparison schools 
only (N=44 schools, 230 observations)

Variable Coefficient
Standard 

error Probability

Intercept 224.260 0.887 0.000

Y2006 0.981 0.749 0.190

Time 0.187 0.180 0.300

Source: Authors’ analysis based on data described in text.

Table D4	

Baseline mean model, difference-in-difference 
estimate (N=66 schools, 345 observations)

Variable Coefficient
Standard 

error Probability

Intercept 224.690 0.722 0.000

IY2006_1 1.480 0.517 0.004

Itreat_1 0.421 1.250 0.340

Iy20xtre_~1 0.379 0.899 0.420

Source: Authors’ analysis based on data described in text.

Table D5	

Baseline mean model, difference-in-
difference estimate, with covariates 
(N=66 schools, 345 observations)

Variable Coefficient
Standard 

error Probability

Intercept 242.140 22.290 0.000

IY2006_1 1.540 0.518 0.003

Itreat_1 –0.159 0.948 0.860

Iy20xtre_~1 0.416 0.900 0.640

Afam –0.067 0.236 0.770

Asian –0.043 0.248 0.860

Hisp –0.087 0.228 0.700

White –0.145 0.230 0.520

Totenrl 0.001 0.001 0.440

Lepper 0.049 0.070 0.480

Liper –0.236 0.036 0.000

Hqtper 0.076 0.039 0.050

Source: Authors’ analysis based on data described in text.
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Assuming the linear trend model, the difference-
in-difference estimates in table D8 nearly rep-
licated the results in the baseline mean model. 
Again, the program impact is 0.37 of a scaled 
point on the mathematics test, but this difference 
is again not significant and could easily have oc-
curred by chance.

In table D9 covariates were again introduced into 
the difference-in-difference analysis. The results 
are similar to the baseline mean model except 
that the “time” variable is also introduced into the 
analysis.

Finally, given that Massachusetts Comprehensive 
Assessment System (MCAS) mathematics scaled 

scores are transformations from raw scores,23 re-
searchers examined the raw scores that represent 
the actual numeric score that the students received 
on the MCAS. The results were nearly identical, for 
both the baseline mean and linear trend models, 
to the analyses reported above. These analyses are 
available upon request.

Table D8	

Linear trend model, difference-in-difference 
estimate (N=66 schools, 345 observations)

Variable Coefficient
Standard 

error Probability

Intercept 224.150 0.787 0.000

Time 0.234 0.132 0.070

IY2006_1 0.855 0.626 0.170

Itreat_1 0.432 1.260 0.730

Iy20xtre_~1 0.368 0.894 0.410

Source: Authors’ analysis based on data described in text.

Table D9	

Linear trend model, difference-in-difference 
estimate, with covariates  
(N=66 schools, 345 observations)

Variable Coefficient
Standard 

error Probability

Intercept 241.430 21.470 0.000

Time 0.274 0.133 0.040

IY2006_1 0.804 0.632 0.200

Itreat_1 –0.187 0.915 0.830

Iy20xtre_~1 0.410 0.902 0.640

Afam –0.069 0.228 0.760

Asian –0.050 0.239 0.830

Hisp –0.091 0.219 0.670

White –0.145 0.222 0.510

Totenrl 0.001 0.001 0.380

Lepper 0.053 0.068 0.430

Liper –0.234 0.035 0.000

Hqtper 0.077 0.038 0.040

Source: Authors’ analysis based on data described in text.
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Appendix E   
Massachusetts Curriculum Frameworks 
for grade 8 mathematics (May 2004)

Number sense and operations strand

Topic 1: Numbers

Grades 7–8:

8.N.1. Compare, order, estimate, and translate 
among integers, fractions and mixed numbers 
(rational numbers), decimals, and percents. 

8.N.2. Define, compare, order, and apply frequently 
used irrational numbers, such as √2 and π. 

8.N.3. Use ratios and proportions in the solution of 
problems, in particular, problems involving unit 
rates, scale factors, and rate of change. 

8.N.4. Represent numbers in scientific nota-
tion, and use them in calculations and problem 
situations. 

8.N.5. Apply number theory concepts, including 
prime factorization and relatively prime numbers, 
to the solution of problems. 

Grade (All):

3.N.6. Select, use, and explain various meanings 
and models of multiplication (through 10 × 10). 
Relate multiplication problems to corresponding 
division problems, for example, draw a model to 
represent 5 × 6 and 30 ÷ 6. 

Topic 2: Operations

Grades 7–8:

8.N.6. Demonstrate an understanding of absolute 
value, for example, |–3| = |3| = 3. 

8.N.7. Apply the rules of powers and roots to 
the solution of problems. Extend the Order of 

Operations to include positive integer exponents 
and square roots. 

8.N.8. Demonstrate an understanding of the 
properties of arithmetic operations on rational 
numbers. Use the associative, commutative, and 
distributive properties; properties of the identity 
and inverse elements (–7 + 7 = 0; 3/4 × 4/3 = 1); and 
the notion of closure of a subset of the rational 
numbers under an operation (the set of odd inte-
gers is closed under multiplication but not under 
addition). 

Topic 3: Computation

Grades 7–8:

8.N.9. Use the inverse relationships of addition 
and subtraction, multiplication and division, and 
squaring and finding square roots to simplify 
computations and solve problems, such as multi-
plying by 1/2 or 0.5 is the same as dividing by 2. 

8.N.10. Estimate and compute with fractions 
(including simplification of fractions), integers, 
decimals, and percents (including those greater 
than 100 and less than 1). 

8.N.11. Determine when an estimate rather than 
an exact answer is appropriate and apply in prob-
lem situations. 

8.N.12. Select and use appropriate operations (ad-
dition, subtraction, multiplication, division, and 
positive integer exponents) to solve problems with 
rational numbers (including negatives). 

Patterns, relations, and algebra strand

Topic 4: Patterns, relations, and functions

Grades 7–8:

8.P.1. Extend, represent, analyze, and generalize 
a variety of patterns with tables, graphs, words, 
and, when possible, symbolic expressions. Include 
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arithmetic and geometric progressions, such as 
compounding. 

Topic 5: Symbols

Grades 7–8:

8.P.2. Evaluate simple algebraic expressions for 
given variable values, such as 3a2 – b for a = 3 and 
b = 7. 

8.P.3. Demonstrate an understanding of the 
identity (–x)(–y) = xy. Use this identity to simplify 
algebraic expressions, such as (–2)(–x+2) = 2x – 4. 

Topic 6: Models

Grades 7–8:

8.P.4. Create and use symbolic expressions and 
relate them to verbal, tabular, and graphical 
representations. 

8.P.5. Identify the slope of a line as a measure 
of its steepness and as a constant rate of change 
from its table of values, equation, or graph. 
Apply the concept of slope to the solution of 
problems. 

Topic 7: Change

Grades 7–8:

8.P.6. Identify the roles of variables within an 
equation, for example, y = mx + b, expressing y as 
a function of x with parameters m and b. 

8.P.7. Set up and solve linear equations and 
inequalities with one or two variables, using alge-
braic methods, models, and graphs. 

8.P.8. Explain and analyze—both quantitatively 
and qualitatively, using pictures, graphs, charts, 
or equations—how a change in one variable 
results in a change in another variable in func-
tional relationships, for example, C = πd, A = πr2 
(A as a function of r), Arectangle = lw (Arectangle as a 
function of l and w). 

8.P.9. Use linear equations to model and analyze 
problems involving proportional relationships. 
Use technology as appropriate. 

8.P.10. Use tables and graphs to represent and com-
pare linear growth patterns. In particular, compare 
rates of change and x- and y-intercepts of different 
linear patterns. 

Geometry strand

Topic 8: Properties of shapes

Analyze characteristics and properties of two- 
and three-dimensional geometric shapes and 
develop mathematical arguments about geometric 
relationships. 

Grades 7–8:

8.G.1. Analyze, apply, and explain the relationship 
between the number of sides and the sums of the 
interior and exterior angle measures of polygons. 

8.G.2. Classify figures in terms of congruence and 
similarity, and apply these relationships to the 
solution of problems. 

Topic 9: Locations and spatial relationships

Specify locations and describe spatial relationships 
using coordinate geometry and other representa-
tional systems. 

Grades 7–8:

8.G.3. Demonstrate an understanding of the rela-
tionships of angles formed by intersecting lines, 
including parallel lines cut by a transversal. 

8.G.4. Demonstrate an understanding of the 
Pythagorean theorem. Apply the theorem to the 
solution of problems. 

Topic 10: Transformations and symmetry

Apply transformations and use symmetry to ana-
lyze mathematical situations. 
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Grades 7–8:

8.G.5. Use a straight-edge, compass, or other tools 
to formulate and test conjectures, and to draw 
geometric figures. 

8.G.6. Predict the results of transformations on 
unmarked or coordinate planes and draw the 
transformed figure, for example, predict how 
tessellations transform under translations, reflec-
tions, and rotations. 

Topic 11: Visualization and models

Use visualization, spatial reasoning, and geomet-
ric modeling to solve problems. 

Grades 7–8:

8.G.7. Identify three-dimensional figures (prisms, 
pyramids) by their physical appearance, distin-
guishing attributes, and spatial relationships such 
as parallel faces. 

8.G.8. Recognize and draw two-dimensional 
representations of three-dimensional objects (nets, 
projections, and perspective drawings). 

Measurement strand

Topic 12: Measurable attributes and measurement systems

Grades 7–8:

8.M.2. Given the formulas, convert from one sys-
tem of measurement to another. Use technology as 
appropriate. 

Topic 13: Techniques and tools

Apply appropriate techniques, tools, and formulas 
to determine measurements. 

Grades 7–8:

8.M.3. Demonstrate an understanding of the 
concepts and apply formulas and procedures for 
determining measures, including those of area 

and perimeter/circumference of parallelograms, 
trapezoids, and circles. Given the formulas, deter-
mine the surface area and volume of rectangular 
prisms, cylinders, and spheres. Use technology as 
appropriate. 

8.M.4. Use ratio and proportion (including scale 
factors) in the solution of problems, including 
problems involving similar plane figures and indi-
rect measurement. 

8.M.5. Use models, graphs, and formulas to solve 
simple problems involving rates (velocity and 
density). 

Data analysis, statistics, and probability strand

Topic 14: Data collection

Formulate questions that can be addressed with 
data and collect, organize, and display relevant 
data to answer them. 

Grades 7–8:

8.D.1. Describe the characteristics and limitations 
of a data sample. Identify different ways of select-
ing a sample, for example, convenience sampling, 
responses to a survey, random sampling. 

Topic 15: Statistical methods

Select and use appropriate statistical methods to 
analyze data. 

Grades 7–8:

8.D.2. Select, create, interpret, and utilize various 
tabular and graphical representations of data, such 
as circle graphs, Venn diagrams, scatterplots, stem-
and-leaf plots, box-and-whisker plots, histograms, 
tables, and charts. Differentiate between continu-
ous and discrete data and ways to represent them. 

Topic 16: Inferences and predictions

Develop and evaluate inferences and predictions 
that are based on data. 



	A ppendix E	 29

Grades 7–8:

8.D.3. Find, describe, and interpret appropriate 
measures of central tendency (mean, median, and 
mode) and spread (range) that represent a set of 
data. Use these notions to compare different sets 
of data. 

Topic 17: Probability

Understand and apply basic concepts of probability. 

Grades 7–8:

8.D.4. Use tree diagrams, tables, organized lists, 
basic combinatorics (“fundamental counting prin-
ciple”), and area models to compute probabilities 
for simple compound events, for example, multiple 
coin tosses or rolls of dice. 

Algebra I course

Topic AI.N: Number sense and operations

Understand numbers, ways of representing num-
bers, relationships among numbers, and number 
systems. 

Understand meanings of operations and how they 
relate to one another. 

Compute fluently and make reasonable estimates. 

Grades 9–12:

AI.N.1. Identify and use the properties of opera-
tions on real numbers, including the associative, 
commutative, and distributive properties; the 
existence of the identity and inverse elements for 
addition and multiplication; the existence of nth 
roots of positive real numbers for any positive 
integer n; the inverse relationship between taking 
the nth root of and the nth power of a positive 
real number; and the density of the set of rational 
numbers in the set of real numbers. (10.N.1) 

AI.N.2. Simplify numerical expressions, includ-
ing those involving positive integer exponents or 

the absolute value, for example, 3(24 – 1) = 45, 
4|3 – 5| + 6 = 14; apply such simplifications in the 
solution of problems. (10.N.2) 

AI.N.3. Find the approximate value for solutions 
to problems involving square roots and cube 
roots without the use of a calculator, for example, 
√(32 – 1) ≈ 2.8 (10.N.3) 

AI.N.4. Use estimation to judge the reasonable-
ness of results of computations and of solutions to 
problems involving real numbers. (10.N.4) 

Topic AI.P: Patterns, relations, and algebra

Understand patterns, relations, and functions. 

Represent and analyze mathematical situations 
and structures using algebraic symbols. 

Use mathematics models to represent and under-
stand quantitative relationships. 

Grades 9–12:

AI.P.3. Demonstrate an understanding of relations 
and functions. Identify the domain, range, depen-
dent, and independent variables of functions. 

AI.P.4. Translate between different representa-
tions of functions and relations: graphs, equations, 
point sets, and tabular. 

AI.P.5. Demonstrate an understanding of the rela-
tionship between various representations of a line. 
Determine a line’s slope and x- and y-intercepts 
from its graph or from a linear equation that rep-
resents the line. Find a linear equation describing 
a line from a graph or a geometric description of 
the line, for example, by using the “point-slope” or 
“slope y-intercept” formulas. Explain the signifi-
cance of a positive, negative, zero, or undefined 
slope. (10.P.2) 

AI.P.6. Find linear equations that represent lines 
either perpendicular or parallel to a given line and 
through a point, for example, by using the “point-
slope” form of the equation. (10.G.8) 
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AI.P.7. Add, subtract, and multiply polynomials. 
Divide polynomials by monomials. (10.P.3) 

AI.P.8. Demonstrate facility in symbolic manipu-
lation of polynomial and rational expressions 
by rearranging and collecting terms, factoring 
(a2 – b2 = (a + b)(a – b), x2 + 10x + 21 = (x + 3)(x + 7), 
5x4 + 10x3 – 5x2 = 5x2 (x2 + 2x – 1)), identifying 
and canceling common factors in rational expres-
sions, and applying the properties of positive 
integer exponents. (10.P.4) 

AI.P.9. Find solutions to quadratic equations (with 
real roots) by factoring, completing the square, 
or using the quadratic formula. Demonstrate an 
understanding of the equivalence of the methods. 
(10.P.5) 

AI.P.10. Solve equations and inequalities including 
those involving absolute value of linear expres-
sions (|x – 2| > 5) and apply to the solution of 
problems. (10.P.6) 

AI.P.11. Solve everyday problems that can be 
modeled using linear, reciprocal, quadratic, or 
exponential functions. Apply appropriate tabular, 
graphical, or symbolic methods to the solution. 
Include compound interest, and direct and inverse 
variation problems. Use technology when appro-
priate. (10.P.7) 

AI.P.12. Solve everyday problems that can be mod-
eled using systems of linear equations or inequali-
ties. Apply algebraic and graphical methods to 
the solution. Use technology when appropriate. 
Include mixture, rate, and work problems. (10.P.8) 

Topic AI.D: Data analysis, statistics, and probability

Formulate questions that can be addressed with 
data and collect, organize, and display relevant 
data to answer them. 

Select and use appropriate statistical methods to 
analyze data. 

Develop and evaluate inferences and predictions 
that are based on data. 

Understand and apply basic concepts of probability. 

Grades 9–12:

AI.D.1. Select, create, and interpret an appropriate 
graphical representation (scatterplot, table, stem-
and-leaf plots, circle graph, line graph, and line 
plot) for a set of data and use appropriate statistics 
(mean, median, range, and mode) to communicate 
information about the data. Use these notions to 
compare different sets of data. (10.D.1) 

AI.D.2. Approximate a line of best fit (trend line) 
given a set of data (scatterplot). Use technology 
when appropriate. (10.D.2) 

AI.D.3. Describe and explain how the relative sizes 
of a sample and the population affect the validity 
of predictions from a set of data. (10.D.3) 

Algebra II course

Topic AII.N: Number sense and operations

Understand numbers, ways of representing numbers, 
relationships among numbers, and number systems. 

Understand meanings of operations and how they 
relate to one another. 

Compute fluently and make reasonable estimates. 

Grades 9–12:

AII.N.1. Define complex numbers (such as a + bi) 
and operations on them, in particular, addition, 
subtraction, multiplication, and division. 

Relate the system of complex numbers to the sys-
tems of real and rational numbers. (12.N.1) 

AII.N.2. Simplify numerical expressions with pow-
ers and roots, including fractional and negative 
exponents. 

Topic AII.P: Patterns, relations, and algebra

Understand patterns, relations, and functions. 
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Represent and analyze mathematical situations 
and structures using algebraic symbols. 

Use mathematical models to represent and under-
stand quantitative relationships. 

Analyze change in various contexts. 

Grades 9–12:

AII.P.1. Describe, complete, extend, analyze, 
generalize, and create a wide variety of patterns, 
including iterative and recursive patterns such as 
Pascal’s Triangle. (12.P.1) 

AII.P.2. Identify arithmetic and geometric 
sequences and finite arithmetic and geometric 
series. Use the properties of such sequences and 
series to solve problems, including finding the for-
mula for the general term and the sum, recursively 
and explicitly. (12.P.2) 

AII.P.3. Demonstrate an understanding of the 
binomial theorem and use it in the solution of 
problems. (12.P.3) 

AII.P.4. Demonstrate an understanding of the 
exponential and logarithmic functions. 

AII.P.5. Perform operations on functions, in-
cluding composition. Find inverses of functions. 
(12.P.5) 

AII.P.6. Given algebraic, numeric and/or graphical 
representations, recognize functions as polynomial, 
rational, logarithmic, or exponential. (12.P.6) 

AII.P.7. Find solutions to quadratic equations (with 
real coefficients and real or complex roots) and 
apply to the solutions of problems. (12.P.7) 

AII.P.8. Solve a variety of equations and inequali-
ties using algebraic, graphical, and numerical 
methods, including the quadratic formula; use 
technology where appropriate. Include poly
nomial, exponential, and logarithmic functions; 
expressions involving the absolute values; and 
simple rational expressions. (12.P.8) 

AII.P.9. Use matrices to solve systems of linear 
equations. Apply to the solution of everyday prob-
lems. (12.P.9) 

AII.P.10. Use symbolic, numeric, and graphi-
cal methods to solve systems of equations and/
or inequalities involving algebraic, exponential, 
and logarithmic expressions. Also use technol-
ogy where appropriate. Describe the relationships 
among the methods. (12.P.10) 

AII.P.11. Solve everyday problems that can be 
modeled using polynomial, rational, exponential, 
logarithmic, and step functions, absolute values 
and square roots. Apply appropriate graphi-
cal, tabular, or symbolic methods to the solu-
tion. Include growth and decay; logistic growth; 
joint (I = Prt, y = k(w1 + w2)), and combined 
(F = G(m1m2)/d2) variation. (12.P.11) 

AII.P.12. Identify maximum and minimum values 
of functions in simple situations. Apply to the 
solution of problems. (12.P.12) 

AII.P.13. Describe the translations and scale 
changes of a given function f(x) resulting from 
substitutions for the various parameters a, b, 
c, and d in y = af(b(x + c/b)) + d. In particular, 
describe the effect of such changes on polynomial, 
rational, exponential, and logarithmic functions. 
(12.P.13) 

Topic AII.G: Geometry

Analyze characteristics and properties of two- 
and three-dimensional geometric shapes and 
develop mathematical arguments about geometric 
relationships. 

Specify locations and describe spatial relationships 
using coordinate geometry and other representa-
tional systems. 

Apply transformations and use symmetry to ana-
lyze mathematical situations. 

Use visualization, spatial reasoning, and geomet-
ric modeling to solve problems. 
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Grades 9–12:

AII.G.1. Define the sine, cosine, and tangent of 
an acute angle. Apply to the solution of problems. 
(12.G.1) 

AII.G.2. Derive and apply basic trigonometric 
identities (sin2θ + cos2θ = 1, tan2θ + 1 = sec2θ) and 
the laws of sines and cosines. (12.G.2) 

AII.G.3. Relate geometric and algebraic represen-
tations of lines, simple curves, and conic sections. 
(12.G.4) 

Topic AII.D: Data analysis, statistics, and probability

Formulate questions that can be addressed with 
data and collect, organize, and display relevant 
data to answer them. 

Select and use appropriate statistical methods to 
analyze data. 

Develop and evaluate inferences and predictions 
that are based on data. 

Understand and apply basic concepts of probability. 

Grades 9–12:

AII.D.1. Select an appropriate graphical repre-
sentation for a set of data and use appropriate 
statistics (quartile or percentile distribution) to 
communicate information about the data. (12.D.2) 

AII.D.2. Use combinatorics (such as “fundamental 
counting principle,” permutations, and combina-
tions) to solve problems, in particular, to compute 
probabilities of compound events. Use technology 
as appropriate. (12.D.6) 

Geometry course

Topic G.G: Geometry

Analyze characteristics and properties of two- 
and three-dimensional geometric shapes and 

develop mathematical arguments about geometric 
relationships. 

Specify locations and describe spatial relationships 
using coordinate geometry and other representa-
tional systems. 

Apply transformations and use symmetry to ana-
lyze mathematical situations. 

Use visualization, spatial reasoning, and geomet-
ric modeling to solve problems. 

Grades 9–12:

G.G.1. Recognize special types of polygons (such 
as isosceles triangles, parallelograms, and rhom-
buses). Apply properties of sides, diagonals, and 
angles in special polygons; identify their parts and 
special segments (such as altitudes, midsegments); 
determine interior angles for regular polygons. 
Draw and label sets of points such as line seg-
ments, rays, and circles. Detect symmetries of 
geometric figures. 

G.G.2. Write simple proofs of theorems in geomet-
ric situations, such as theorems about congruent 
and similar figures, parallel or perpendicular 
lines. Distinguish between postulates and theo-
rems. Use inductive and deductive reasoning, 
as well as proof by contradiction. Given a condi-
tional statement, write its inverse, converse, and 
contrapositive. 

G.G.3. Apply formulas for a rectangular coordinate 
system to prove theorems. 

G.G.4. Draw congruent and similar figures using 
a compass, straightedge, protractor, or computer 
software. Make conjectures about methods of 
construction. Justify the conjectures by logical 
arguments. (10.G.2) 

G.G.10. Apply the triangle inequality and other 
inequalities associated with triangles (such as the 
longest side is opposite the greatest angle) to prove 
theorems and solve problems. 
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G.G.11. Demonstrate an understanding of the rela-
tionship between various representations of a line. 
Determine a line’s slope and x- and y-intercepts from 
its graph or from a linear equation that represents 
the line. Find a linear equation describing a line 
from a graph or a geometric description of the line, 
for example, by using the “point-slope” or “slope 
y-intercept” formulas. Explain the significance of a 
positive, negative, zero, or undefined slope. (10.P.2) 

G.G.12. Using rectangular coordinates, calculate 
midpoints of segments, slopes of lines and seg-
ments, and distances between two points, and apply 
the results to the solutions of problems. (10.G.7) 

G.G.13. Find linear equations that represent lines 
either perpendicular or parallel to a given line and 
through a point, for example, by using the “point-
slope” form of the equation. (10.G.8) 

G.G.14. Demonstrate an understanding of the 
relationship between geometric and algebraic 
representations of circles. 

G.G.15. Draw the results, and interpret transforma-
tions on figures in the coordinate plane, for example, 
translations, reflections, rotations, scale factors, 
and the results of successive transformations. Apply 
transformations to the solution of problems. (10.G.9) 

G.G.16. Demonstrate the ability to visualize solid 
objects and recognize their projections and cross 
sections. (10.G.10) 

G.G.17. Use vertex-edge graphs to model and solve 
problems. (10.G.11) 

G.G.18. Use the notion of vectors to solve prob-
lems. Describe addition of vectors and multiplica-
tion of a vector by a scalar, both symbolically and 
pictorially. Use vector methods to obtain geomet-
ric results. (12.G.3) 

Topic G.M: Measurement

Understand measurable attributes of objects and 
the units, systems, and processes of measurement. 

Apply appropriate techniques, tools, and formulas 
to determine measurements. 

Grades 9–12:

G.M.1. Calculate perimeter, circumference, and 
area of common geometric figures such as parallel-
ograms, trapezoids, circles, and triangles. (10.M.1) 

G.M.2. Given the formula, find the lateral area, 
surface area, and volume of prisms, pyramids, 
spheres, cylinders, and cones, (find the volume of a 
sphere with a specified surface area). (10.M.2) 

G.M.3. Relate changes in the measurement of 
one attribute of an object to changes in other 
attributes, for example, how changing the radius 
or height of a cylinder affects its surface area or 
volume. (10.M.3) 

G.M.4. Describe the effects of approximate error in 
measurement and rounding on measurements and 
on computed values from measurements. (10.M.4) 

G.M.5. Use dimensional analysis for unit conver-
sion and to confirm that expressions and equa-
tions make sense. (12.M.2) 

Precalculus course

Topic PC.N: Number sense and operations

Understand numbers, ways of representing num-
bers, relationships among numbers, and number 
systems. 

Understand meanings of operations and how they 
relate to each other. 

Compute fluently and make reasonable estimates. 

Grades 9–12:

PC.N.1. Plot complex numbers using both rectan-
gular and polar coordinates systems. Represent 
complex numbers using polar coordinates, that is, 
a + bi = r(cosθ + isinθ). Apply DeMoivre’s theorem 
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to multiply, take roots, and raise complex numbers 
to a power. 

Topic PC.P: Patterns, relations, and algebra

Understand patterns, relations, and functions. 

Represent and analyze mathematical situations 
and structures using algebraic symbols. 

Use mathematical models to represent and under-
stand quantitative relationships. 

Analyze change in various contexts. 

Grades 9–12:

PC.P.1. Use mathematical induction to prove 
theorems and verify summation formulas, for 
example, verify 

n(n + 1)(2n + 1)

6
k2 = .Σ

n

k=1

PC.P.2. Relate the number of roots of a polyno-
mial to its degree. Solve quadratic equations with 
complex coefficients. 

PC.P.3. Demonstrate an understanding of the 
trigonometric functions (sine, cosine, tangent, 
cosecant, secant, and cotangent). Relate the func-
tions to their geometric definitions. 

PC.P.4. Explain the identity sin2θ + cos2θ = 1. 
Relate the identity to the Pythagorean theorem. 

PC.P.5. Demonstrate an understanding of the 
formulas for the sine and cosine of the sum or the 
difference of two angles. Relate the formulas to 
DeMoivre’s theorem and use them to prove other 
trigonometric identities. Apply to the solution of 
problems. 

PC.P.6. Understand, predict, and interpret the ef-
fects of the parameters a, ω, b, and c on the graph 
of y = as in (ω(x – b)) + c; similarly for the cosine 
and tangent. Use to model periodic processes. 
(12.P.13) 

PC.P.7. Translate between geometric, algebraic, 
and parametric representations of curves. Apply to 
the solution of problems. 

PC.P.8. Identify and discuss features of conic sec-
tions: axes, foci, asymptotes, and tangents. Convert 
between different algebraic representations of conic 
sections. 

PC.P.9. Relate the slope of a tangent line at a specific 
point on a curve to the instantaneous rate of change. 
Explain the significance of a horizontal tangent line. 
Apply these concepts to the solution of problems. 

Topic PC.G: Geometry

Analyze characteristics and properties of two- 
and three-dimensional geometric shapes and 
develop mathematical arguments about geometric 
relationships. 

Specify locations and describe spatial relationships 
using coordinate geometry and other representa-
tional systems. 

Apply transformations and use symmetry to ana-
lyze mathematical situations. 

Use visualization, spatial reasoning, and geomet-
ric modeling to solve problems. 

Grades 9–12:

PC.G.1. Demonstrate an understanding of the laws 
of sines and cosines. Use the laws to solve for the 
unknown sides or angles in triangles. Determine the 
area of a triangle given the length of two adjacent 
sides and the measure of the included angle. (12.G.2) 

PC.G.2. Use the notion of vectors to solve problems. 
Describe addition of vectors, multiplication of a 
vector by a scalar, and the dot product of two vec-
tors, both symbolically and geometrically. Use vec-
tor methods to obtain geometric results. (12.G.3) 

PC.G.3. Apply properties of angles, parallel lines, 
arcs, radii, chords, tangents, and secants to solve 
problems. (12.G.5) 
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Topic PC.M: Measurement

Understand measurable attributes of objects and 
the units, systems, and processes of measurement. 

Apply appropriate techniques, tools, and formulas 
to determine measurements. 

Grades 9–12:

PC.M.1. Describe the relationship between degree 
and radian measures, and use radian measure in 
the solution of problems, in particular problems in-
volving angular velocity and acceleration. (12.M.1) 

PC.M.2. Use dimensional analysis for unit conver-
sion and to confirm that expressions and equa-
tions make sense. (12.M.2) 

Topic PC.D: Data analysis, statistics, and probability

Formulate questions that can be addressed with 
data collect, organize, and display relevant data to 
answer them. 

Select and use appropriate statistical methods to 
analyze data. 

Develop and evaluate inferences and predictions 
that are based on data. 

Understand and apply basic concepts of probability. 

Grades 9–12:

PC.D.1. Design surveys and apply random sam-
pling techniques to avoid bias in the data collec-
tion. (12.D.1) 

PC.D.2. Apply regression results and curve fitting 
to make predictions from data. (12.D.3) 

PC.D.3. Apply uniform, normal, and binomial 
distributions to the solutions of problems. (12.D.4) 

PC.D.4. Describe a set of frequency distribution 
data by spread (variance and standard deviation), 

skewness, symmetry, number of modes, or other 
characteristics. Use these concepts in everyday 
applications. (12.D.5) 

PC.D.5. Compare the results of simulations 
(e.g. random number tables, random functions, 
and area models) with predicted probabilities. 
(12.D.7) 

Scaled score ranges of the Massachusetts Comprehensive 
Assessment System by performance level and year

Table E1	

Scaled score ranges of the Massachusetts 
Comprehensive Assessment System 
by performance level and year

2001–02 2003–05

Warning

200–203

Warning

200–202

204–207 204–206

208–211 208–210

212–215 212–214

216–219 216–218

Needs 
improvement

220–223

Needs 
improvement

220–222

224–227 224–226

228–231 228–230

232–235 232–234

236–239 236–238

Proficient

240–243

Proficient

240–242

244–247 244–246

248–251 248–250

252–255 252–254

256–259 256–258

Advanced

260–263

Advanced

260–262

264–267 264–266

268–271 268–270

272–275 272–274

276–280 276–280

Source: 2001 data are from http://www.doe.mass.edu/mcas/2001/
interpretive_guides/fullguide.pdf; 2002 data are from http://www.doe.
mass.edu/mcas/2002/interpretive_guides/fullguide.pdf; 2003 data 
are from http://www.doe.mass.edu/mcas/2003/interpretive_guides/
full.pdf; 2004 data are from http://www.doe.mass.edu/mcas/2004/
interpretive_guides/full.pdf; 2005 data are from http://www.doe.mass.
edu/mcas/2005/interpretive_guides/full.pdf.
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Notes

Many thanks to Thomas Hanson (WestEd), for 
his methodological expertise, patience, and Stata 
syntax writing ability, and to Laura O’Dwyer (Bos-
ton College), Craig Hoyle (EDC), Thomas Cook 
(Northwestern University), William Shadish (UC 
Merced), Howard Bloom (MDRC), David Wilson 
(George Mason University), and Natalie Lacireno-
Paquet (Learning Innovations) for their assistance.

An effect size of 0.40 means that the experi-1.	
mental group is performing, on average, about 
0.40 of a standard deviation better than the 
control group (Valentine and Cooper, 2003). 
An effect size of 0.40 represents a roughly 20 
percent improvement over the control group.

Bloom (2003) might argue that 2006 should 2.	
be interpreted as an “implementation” year 
rather than a post-test year.

Scaled scores are constructed by converting 3.	
students’ raw scores (say, the number of ques-
tions correct) on a test to yield comparable 
results across students, test versions, or time. 
Raw scores were also examined and produced 
similar results to the scaled scores (see ap-
pendix C).

To report adequate yearly progress determina-4.	
tions the MCAS has four performance levels: 
warning (scoring 200–19), needs improve-
ment (220–39), proficient (240–59), and 
advanced (260–80).

Statistical power refers to the ability of the 5.	
statistical test to detect a true treatment effect, 
if one exists. Although there are other design 
features that can influence the statistical 
power of a test, researchers are generally most 
concerned with sample size, because it is the 
component they have the most control over 
and can normally plan for.

Using Stata’s program for computing statistical 6.	
power in repeated measures designs (such as 

time series)—and assuming a type I error rate 
(α) of 0.05 (two-sided), correlations between 
the annual test score measures of 0.70, and 
statistical power of 0.80—there was sufficient 
statistical power for the originally designed 
study (with 25 program schools and 50 com-
parison schools) to detect a post-intervention 
difference between program and comparison 
schools of 0.41 standard deviations. The loss 
of three program schools and six comparison 
schools (with power at 0.80) increased the 
minimum detectible effect size to 0.44 (the 
actual pretest–post-test correlation was 0.74). 
An effect of such magnitude would be gener-
ally considered moderate (Cohen, 1988; Lipsey 
& Wilson, 1993), although it is relatively large 
by education intervention standards (Bloom, 
Richburg-Hayes, & Black, 2005). 

The 2001–03 achievement data were not pub-7.	
licly available and had to be requested from 
the Massachusetts Department of Education.

The initial study plan called for including 8.	
both sixth grade and eighth grade. But that set 
would have excluded too many of the pro-
gram schools and a large pool of comparison 
schools.

Student level data for 2001–03 had to be 9.	
aggregated at the school level. The 2001–03 
achievement data were provided by the 
Massachusetts Department of Education at 
the student level but were not linked to the 
student level demographic data for the same 
years.

Twenty-five schools were originally identified 10.	
as treatment schools, but three were found to 
be newly configured or established schools, 
meaning they had no data on student achieve-
ment for previous years and could not be 
included in the time series analysis. They were 
therefore excluded from the study.

The authors are very grateful to Thomas Han-11.	
son, WestEd, for his assistance throughout 
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on the covariate matching procedure, and to 
Craig Hoyle (EDC) and William Shadish (Uni-
versity of California, Merced) for advice.

Percentages are preferred over total numbers. 12.	
For example, 100 Asian students in a Boston 
school might be 10 percent of the school’s total 
population; in a different school, it could rep-
resent 50 percent or more of the total enrolled 
students.

To create SCI, the following formula was used:13.	

Academic Performance = α + β1*Enrollment 
+ β2*Income+ β3*English Language Learners 
+ βk*Race/Ethnic + ε

α represents the intercept, or the value of Y 
if X is 0. In this instance, it would be the pre-
dicted score on the 2005 Mathematics CPI if 
enrollment, income, English language learn-
ers and race/ethnicity were all zero.

Academic Performance represented the average 
school performance on the 2005 Composite 
Performance Index for eighth-grade math-
ematics. The 2005 CPI is actually an average of 
two years of the school’s eighth-grade math-
ematics scores on the Massachusetts Compre-
hensive Assessment System (MCAS) test. 

Enrollment is the school’s total enrollment. 

Income is the percentage of students classified 
as low income.

Race/Ethnic is the percentage of students of 
different racial or ethnic groups (with percent-
age of White students the omitted reference 
group).

β1, β2, β3, and βk represent the relation-
ships of school enrollment, percentage of 
low-income students, percentage of English 
language learners, and percentage of different 
race/ethnicity groups to the 2005 Mathemat-
ics CPI scores, respectively. 

ε represents the error term. Error in this 
instance refers to the difference between the 
predicted and actual Mathematics CPI 2005 
scores. In this study, it represents the ad-
justed mathematics score (2005 CPI Math-
ematics Score minus the SCI or predicted 
score).

This section on Mahalanobis Distance was 14.	
informed by the relevant section in StatSoft, 
Inc. (2001). 

The measure was created by the noted 15.	
statistician, Prasanta Chandra Mahalanobis, 
in 1930. See http://en.wikipedia.org/wiki/
Prasanta_Chandra_Mahalanobis.

Many thanks to Thomas Hanson of WestEd, 16.	
who drafted the Stata syntax for creating the 
Mahalanobis Distance measures. The syntax 
was:

*Compute Mahalanobis Distance
matrix drop _all
mkmat scix true, matrix(xvar)
matrix accum cov = scix true, noc dev
matrix cov = cov/(r(N)-1)
matrix factorx= (xvar) * (inv(cov)) * (xvar’)
matrix factor= (vecdiag(factorx))’
svmat factor, names(factor)

sort dstlcl factor

It was too difficult to replicate in SPSS the 17.	
Mahalanobis Distance method used in Stata. 
Unfortunately, the original Stata syntax is 
very idiosyncratic and would require exten-
sive programming time to convert it into 
similar syntax in SPSS.

David Kantor provided excellent guidance to 18.	
the team in the use of the Mahapick program.

To prevent individual schools from being 19.	
identified, tables detailing the samples of 
schools that each iteration produced have 
been omitted.
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There is also a statistically significant differ-20.	
ence between the program and comparison 
schools on the percentage of students enrolled 
at the school classified as “Hawaiian/Pacific 
Islander.” This is not troubling because it 
represents an extremely small share of the 
student population.

The Stata syntax used was:21.	

renames mthscaledgrd62001 mth-
scaledgrd62002 mthscaledgrd62003 
mthscaledgrd62004 mthscaledgrd62005 
mthscaledgrd62006 mt82001 mt82002sc 
mt82003sc mt82004sc mt82005sc mt82006sc 
\ math6s2001 math6s2002 math6s2003 
math6s2004 math6s2005 math6s2006 
math8s2001 math8s2002 math8s2003 
math8s2004 math8s2005 math8s2006 

gen byte treat=1 if stygrouppetrosino == 2
replace treat=0 if stygrouppetrosino == 3

keep school treat grsix greight totenrl-mrnh 
lepper liper hqtper math6s2001 math6s2002 
math6s2003 math6s2004 math6s2005 
math6s2006 math8s2001 math8s2002 
math8s2003 math8s2004 math8s2005 
math8s2006 

order school treat grsix greight totenrl-mrnh 
lepper liper hqtper math6s2001 math6s2002 
math6s2003 math6s2004 math6s2005 
math6s2006 math8s2001 math8s2002 
math8s2003 math8s2004 math8s2005 
math8s2006 

reshape long math6s math8s, i(school) j(year)

gen byte y2006=0
replace y2006=1 if year == 2006
gen time=year-2001

egen schlid=group(school)

order schlid school year time y2006
compress

save benchmark1, replace

log using benchmark1, text replace

The following is the Stata syntax for the 22.	
analyses. The relevant analyses are the 
“difference-in-difference” estimates (bold), as 
they represent the pretest–post-test estimate 
for the program group schools compared with 
the comparison schools. 

* Baseline Mean Model - no covariates.
xtreg math8s y2006 if treat == 0, i(schlid)
xtreg math8s y2006 if treat == 1, i(schlid)

* Difference-in-Difference Baseline Mean 
Model - no covariates
xi: xtreg math8s i.y2006*i.treat, i(schlid)

* Linear Baseline Trend Model - no covariates.
xtreg math8s time y2006 if treat == 0, 
i(schlid)
xtreg math8s time y2006 if treat == 1, 
i(schlid)

* Difference-in-Difference Linear Baseline 
Trend Model - no covariates
xi: xtreg math8s time i.y2006*i.treat, i(schlid)

* Baseline Mean Model - covariates.
xtreg math8s y2006 afam asian hisp white to-
tenrl lepper liper hqtper if treat == 0, i(schlid)
xtreg math8s y2006 afam asian hisp white to-
tenrl lepper liper hqtper if treat == 1, i(schlid)

* Difference-in-Difference Baseline Mean 
Model - covariates
xi: xtreg math8s i.y2006*i.treat afam asian 
hisp white totenrl lepper liper hqtper, i(schlid)

* Linear Baseline Trend Model - covariates.
xtreg math8s time y2006 afam asian hisp 
white totenrl lepper liper hqtper if treat == 0, 
i(schlid)
xtreg math8s time y2006 afam asian hisp 
white totenrl lepper liper hqtper if treat == 1, 
i(schlid)
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* Difference-in-Difference Linear Baseline 
Trend Model - no covariates
xi: xtreg math8s time i.y2006*i.treat afam 
asian hisp white totenrl lepper liper hqtper, 
i(schlid)

MCAS scaled scores are transformations from 23.	
raw scores to criterion-referenced cut-points 

established during standard setting exercises 
that took place in 1998 for grade 8 mathemat-
ics. Each year the MADOE finds the raw score 
that is most equal to the difficulty level set 
to 220, 240, and 260 and then builds linear 
equations to determine two different point 
intervals between 200 and 220, 220 and 240, 
240 and 260, and 260 and 280.
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